Solveeit Logo

Question

Question: Seawater at a frequency f = 9 × 10² Hz, has permittivity ∈ = 80∈₀ and resistivity ρ = 0.25 Ωm. Imagi...

Seawater at a frequency f = 9 × 10² Hz, has permittivity ∈ = 80∈₀ and resistivity ρ = 0.25 Ωm. Imagine a parallel plate capacitor is immersed in seawater and is driven by an alternating voltage source V(t) = V₀ sin (2πft). Then the conduction current density becomes 10ˣ times the displacement current density after time t = 1800\frac{1}{800} s. The value of x is ____ (Given: 14πε0\frac{1}{4πε₀} = 9×10⁹ Nm²C⁻²)

Answer

6

Explanation

Solution

The electric field inside a parallel plate capacitor driven by an alternating voltage V(t)=V0sin(2πft)V(t) = V_0 \sin(2\pi f t) is approximately uniform and given by E(t)=V(t)d=V0dsin(2πft)E(t) = \frac{V(t)}{d} = \frac{V_0}{d} \sin(2\pi f t), where dd is the distance between the plates.

The conduction current density is given by Ohm's law: Jc=σE=1ρE\vec{J}_c = \sigma \vec{E} = \frac{1}{\rho} \vec{E}

The magnitude of the conduction current density is Jc(t)=1ρE(t)=V0ρdsin(2πft)|J_c(t)| = \frac{1}{\rho} |E(t)| = \frac{V_0}{\rho d} |\sin(2\pi f t)|.

The displacement current density is given by: Jd=ϵEt\vec{J}_d = \epsilon \frac{\partial \vec{E}}{\partial t}

Jd(t)=ϵt(V0dsin(2πft))=ϵV0d(2πf)cos(2πft)J_d(t) = \epsilon \frac{\partial}{\partial t} \left( \frac{V_0}{d} \sin(2\pi f t) \right) = \epsilon \frac{V_0}{d} (2\pi f) \cos(2\pi f t).

The magnitude of the displacement current density is Jd(t)=ϵV0d(2πf)cos(2πft)|J_d(t)| = \epsilon \frac{V_0}{d} (2\pi f) |\cos(2\pi f t)|.

We are interested in the ratio of the magnitudes of the conduction current density to the displacement current density:

Jc(t)Jd(t)=V0ρdsin(2πft)ϵV0d(2πf)cos(2πft)=1ρϵ(2πf)sin(2πft)cos(2πft)=12πfϵρtan(2πft)\frac{|J_c(t)|}{|J_d(t)|} = \frac{\frac{V_0}{\rho d} |\sin(2\pi f t)|}{\epsilon \frac{V_0}{d} (2\pi f) |\cos(2\pi f t)|} = \frac{1}{\rho \epsilon (2\pi f)} \left| \frac{\sin(2\pi f t)}{\cos(2\pi f t)} \right| = \frac{1}{2\pi f \epsilon \rho} |\tan(2\pi f t)|.

We are given:

  • Frequency f=9×102f = 9 \times 10^2 Hz
  • Permittivity ϵ=80ϵ0\epsilon = 80 \epsilon_0
  • Resistivity ρ=0.25Ωm\rho = 0.25 \, \Omega m
  • Time t=1800t = \frac{1}{800} s
  • The relation 14πϵ0=9×109Nm2C2\frac{1}{4\pi \epsilon_0} = 9 \times 10^9 \, Nm^2C^{-2} gives ϵ0=14π×9×109=136π×109F/m\epsilon_0 = \frac{1}{4\pi \times 9 \times 10^9} = \frac{1}{36\pi \times 10^9} \, F/m.

Let's calculate the term 2πfϵρ2\pi f \epsilon \rho: 2πfϵρ=2π(9×102)(80ϵ0)(0.25)2\pi f \epsilon \rho = 2\pi (9 \times 10^2) (80 \epsilon_0) (0.25) =2π(900)(80×136π×109)(0.25)= 2\pi (900) (80 \times \frac{1}{36\pi \times 10^9}) (0.25) =1800π×8036π×109×0.25= 1800\pi \times \frac{80}{36\pi \times 10^9} \times 0.25 =1800×80×0.2536×109=1800×2036×109=3600036×109=1000109=106= \frac{1800 \times 80 \times 0.25}{36 \times 10^9} = \frac{1800 \times 20}{36 \times 10^9} = \frac{36000}{36 \times 10^9} = \frac{1000}{10^9} = 10^{-6}.

Now, let's evaluate the argument of the tangent function at t=1800t = \frac{1}{800} s: 2πft=2π(9×102)(1800)=2π900800=2π98=9π42\pi f t = 2\pi (9 \times 10^2) \left( \frac{1}{800} \right) = 2\pi \frac{900}{800} = 2\pi \frac{9}{8} = \frac{9\pi}{4}.

The ratio of the current densities is: Jc(t)Jd(t)=1106tan(9π4)\frac{|J_c(t)|}{|J_d(t)|} = \frac{1}{10^{-6}} \left| \tan\left(\frac{9\pi}{4}\right) \right|.

We know that tan(9π4)=tan(2π+π4)=tan(π4)=1\tan\left(\frac{9\pi}{4}\right) = \tan\left(2\pi + \frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1. So, tan(9π4)=1=1\left| \tan\left(\frac{9\pi}{4}\right) \right| = |1| = 1.

The ratio is Jc(t)Jd(t)=1106×1=106\frac{|J_c(t)|}{|J_d(t)|} = \frac{1}{10^{-6}} \times 1 = 10^6.

We are given that the conduction current density becomes 10x10^x times the displacement current density. So, Jc(t)Jd(t)=10x\frac{|J_c(t)|}{|J_d(t)|} = 10^x. 106=10x10^6 = 10^x. Therefore, x=6x = 6.

The final answer is 6\boxed{6}.

Explanation: The conduction current density is Jc=E/ρJ_c = E/\rho and the displacement current density is Jd=ϵE/tJ_d = \epsilon \partial E/\partial t. For an alternating voltage V(t)=V0sin(ωt)V(t) = V_0 \sin(\omega t), the electric field in a parallel plate capacitor is E(t)=E0sin(ωt)E(t) = E_0 \sin(\omega t), where E0=V0/dE_0 = V_0/d and ω=2πf\omega = 2\pi f. Jc(t)=E0ρsin(ωt)J_c(t) = \frac{E_0}{\rho} \sin(\omega t) Jd(t)=ϵE0ωcos(ωt)J_d(t) = \epsilon E_0 \omega \cos(\omega t) The ratio of magnitudes is Jc(t)Jd(t)=E0/ρsin(ωt)ϵE0ωcos(ωt)=1ωϵρtan(ωt)\frac{|J_c(t)|}{|J_d(t)|} = \frac{E_0/\rho |\sin(\omega t)|}{\epsilon E_0 \omega |\cos(\omega t)|} = \frac{1}{\omega \epsilon \rho} |\tan(\omega t)|. Given f=9×102f = 9 \times 10^2 Hz, ϵ=80ϵ0\epsilon = 80 \epsilon_0, ρ=0.25Ωm\rho = 0.25 \, \Omega m, t=1800t = \frac{1}{800} s, and 14πϵ0=9×109\frac{1}{4\pi \epsilon_0} = 9 \times 10^9. ω=2πf=2π×9×102\omega = 2\pi f = 2\pi \times 9 \times 10^2. ϵ0=136π×109\epsilon_0 = \frac{1}{36\pi \times 10^9}. ωϵρ=(2π×9×102)×(80×136π×109)×0.25=106\omega \epsilon \rho = (2\pi \times 9 \times 10^2) \times (80 \times \frac{1}{36\pi \times 10^9}) \times 0.25 = 10^{-6}. ωt=(2π×9×102)×1800=9π4\omega t = (2\pi \times 9 \times 10^2) \times \frac{1}{800} = \frac{9\pi}{4}. Jc(t)Jd(t)=1106tan(9π4)=106×1=106\frac{|J_c(t)|}{|J_d(t)|} = \frac{1}{10^{-6}} |\tan(\frac{9\pi}{4})| = 10^6 \times 1 = 10^6. Given Jc(t)Jd(t)=10x\frac{|J_c(t)|}{|J_d(t)|} = 10^x, we have 10x=10610^x = 10^6, so x=6x=6.