Solveeit Logo

Question

Question: $\log_{0.01} 1000 + \log_{0.1} 0.0001$ is equal to :...

log0.011000+log0.10.0001\log_{0.01} 1000 + \log_{0.1} 0.0001 is equal to :

A

-2

B

3

C

-5/2

D

5/2

Answer

5/2

Explanation

Solution

To evaluate the expression log0.011000+log0.10.0001\log_{0.01} 1000 + \log_{0.1} 0.0001, we will evaluate each term separately using the definition and properties of logarithms.

Step 1: Evaluate the first term, log0.011000\log_{0.01} 1000.

We can express the base and the argument as powers of 10: 0.01=1100=1020.01 = \frac{1}{100} = 10^{-2} 1000=1031000 = 10^3

So, the term becomes log102103\log_{10^{-2}} 10^3. Using the logarithm property logbman=nmlogba\log_{b^m} a^n = \frac{n}{m} \log_b a:

log102103=32log1010\log_{10^{-2}} 10^3 = \frac{3}{-2} \log_{10} 10

Since log1010=1\log_{10} 10 = 1:

log102103=32×1=32\log_{10^{-2}} 10^3 = -\frac{3}{2} \times 1 = -\frac{3}{2}

Step 2: Evaluate the second term, log0.10.0001\log_{0.1} 0.0001.

We can express the base and the argument as powers of 10: 0.1=110=1010.1 = \frac{1}{10} = 10^{-1} 0.0001=110000=1040.0001 = \frac{1}{10000} = 10^{-4}

So, the term becomes log101104\log_{10^{-1}} 10^{-4}. Using the logarithm property logbman=nmlogba\log_{b^m} a^n = \frac{n}{m} \log_b a:

log101104=41log1010\log_{10^{-1}} 10^{-4} = \frac{-4}{-1} \log_{10} 10

Since log1010=1\log_{10} 10 = 1:

log101104=4×1=4\log_{10^{-1}} 10^{-4} = 4 \times 1 = 4

Step 3: Add the results from Step 1 and Step 2.

log0.011000+log0.10.0001=32+4\log_{0.01} 1000 + \log_{0.1} 0.0001 = -\frac{3}{2} + 4

To add these values, find a common denominator:

32+82=3+82=52-\frac{3}{2} + \frac{8}{2} = \frac{-3 + 8}{2} = \frac{5}{2}

Thus, the value of the expression is 52\frac{5}{2}.