Solveeit Logo

Question

Question: $\lim_{n \to \infty} n^2 \int_{-1/n}^{1/n} (2010\sin x + 2012 \cos x) |x| dx$...

limnn21/n1/n(2010sinx+2012cosx)xdx\lim_{n \to \infty} n^2 \int_{-1/n}^{1/n} (2010\sin x + 2012 \cos x) |x| dx

Answer

2012

Explanation

Solution

Let the integral be denoted by InI_n: In=1/n1/n(2010sinx+2012cosx)xdxI_n = \int_{-1/n}^{1/n} (2010\sin x + 2012 \cos x) |x| dx

We can split the integral based on the definition of x|x|: In=1/n0(2010sinx+2012cosx)(x)dx+01/n(2010sinx+2012cosx)(x)dxI_n = \int_{-1/n}^{0} (2010\sin x + 2012 \cos x) (-x) dx + \int_{0}^{1/n} (2010\sin x + 2012 \cos x) (x) dx

In the first integral, let u=xu = -x. Then du=dxdu = -dx. When x=1/nx = -1/n, u=1/nu = 1/n. When x=0x = 0, u=0u = 0. The first integral becomes: 1/n0(2010sin(u)+2012cos(u))(u)(du)\int_{1/n}^{0} (2010\sin(-u) + 2012 \cos(-u)) (u) (-du) =1/n0(2010sinu+2012cosu)(u)(du)= \int_{1/n}^{0} (-2010\sin u + 2012 \cos u) (u) (-du) =01/n(2010sinu+2012cosu)udu= \int_{0}^{1/n} (-2010\sin u + 2012 \cos u) u du

Replacing the variable uu with xx: =01/n(2010xsinx+2012xcosx)dx= \int_{0}^{1/n} (-2010x\sin x + 2012x\cos x) dx

Now, substitute this back into the expression for InI_n: In=01/n(2010xsinx+2012xcosx)dx+01/n(2010xsinx+2012xcosx)dxI_n = \int_{0}^{1/n} (-2010x\sin x + 2012x\cos x) dx + \int_{0}^{1/n} (2010x\sin x + 2012x\cos x) dx In=01/n[(2010xsinx+2012xcosx)+(2010xsinx+2012xcosx)]dxI_n = \int_{0}^{1/n} [(-2010x\sin x + 2012x\cos x) + (2010x\sin x + 2012x\cos x)] dx In=01/n(4024xcosx)dxI_n = \int_{0}^{1/n} (4024x\cos x) dx In=402401/nxcosxdxI_n = 4024 \int_{0}^{1/n} x\cos x dx

To evaluate the integral xcosxdx\int x\cos x dx, we use integration by parts (udv=uvvdu\int u dv = uv - \int v du): Let u=xu = x and dv=cosxdxdv = \cos x dx. Then du=dxdu = dx and v=sinxv = \sin x. xcosxdx=xsinxsinxdx=xsinx(cosx)=xsinx+cosx\int x\cos x dx = x\sin x - \int \sin x dx = x\sin x - (-\cos x) = x\sin x + \cos x.

Now, evaluate the definite integral: In=4024[xsinx+cosx]01/nI_n = 4024 [x\sin x + \cos x]_{0}^{1/n} In=4024[(1nsin(1n)+cos(1n))(0sin(0)+cos(0))]I_n = 4024 \left[\left(\frac{1}{n}\sin\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right)\right) - (0\sin(0) + \cos(0))\right] In=4024(1nsin(1n)+cos(1n)1)I_n = 4024 \left(\frac{1}{n}\sin\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right) - 1\right)

We need to find the limit of n2Inn^2 I_n as nn \to \infty: limnn2In=limnn24024(1nsin(1n)+cos(1n)1)\lim_{n \to \infty} n^2 I_n = \lim_{n \to \infty} n^2 \cdot 4024 \left(\frac{1}{n}\sin\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right) - 1\right) Let h=1/nh = 1/n. As nn \to \infty, h0h \to 0. The expression becomes: 4024limh01h2(hsinh+cosh1)4024 \lim_{h \to 0} \frac{1}{h^2} \left(h\sin h + \cos h - 1\right) =4024limh0hsinh+cosh1h2= 4024 \lim_{h \to 0} \frac{h\sin h + \cos h - 1}{h^2}

This is an indeterminate form of type 00\frac{0}{0}. We can use Taylor series expansions for sinh\sin h and cosh\cos h around h=0h=0: sinh=hh36+O(h5)\sin h = h - \frac{h^3}{6} + O(h^5) cosh=1h22+h424+O(h6)\cos h = 1 - \frac{h^2}{2} + \frac{h^4}{24} + O(h^6)

Substitute these into the numerator: hsinh+cosh1=h(hh36+...)+(1h22+h424+...)1h\sin h + \cos h - 1 = h\left(h - \frac{h^3}{6} + ...\right) + \left(1 - \frac{h^2}{2} + \frac{h^4}{24} + ...\right) - 1 =h2h46+...+1h22+h424+...1= h^2 - \frac{h^4}{6} + ... + 1 - \frac{h^2}{2} + \frac{h^4}{24} + ... - 1 =(h2h22)+(h46+h424)+...= \left(h^2 - \frac{h^2}{2}\right) + \left(-\frac{h^4}{6} + \frac{h^4}{24}\right) + ... =h223h424+...= \frac{h^2}{2} - \frac{3h^4}{24} + ... =h22h48+...= \frac{h^2}{2} - \frac{h^4}{8} + ...

Now, substitute this back into the limit: 4024limh0h22h48+...h24024 \lim_{h \to 0} \frac{\frac{h^2}{2} - \frac{h^4}{8} + ...}{h^2} =4024limh0(12h28+...)= 4024 \lim_{h \to 0} \left(\frac{1}{2} - \frac{h^2}{8} + ...\right) =4024(12)= 4024 \left(\frac{1}{2}\right) =2012= 2012

Alternatively, using L'Hopital's Rule on limh0hsinh+cosh1h2\lim_{h \to 0} \frac{h\sin h + \cos h - 1}{h^2}: Applying L'Hopital's rule once: limh0ddh(hsinh+cosh1)ddh(h2)=limh0sinh+hcoshsinh2h\lim_{h \to 0} \frac{\frac{d}{dh}(h\sin h + \cos h - 1)}{\frac{d}{dh}(h^2)} = \lim_{h \to 0} \frac{\sin h + h\cos h - \sin h}{2h} =limh0hcosh2h=limh0cosh2=12= \lim_{h \to 0} \frac{h\cos h}{2h} = \lim_{h \to 0} \frac{\cos h}{2} = \frac{1}{2}

The total limit is 4024×12=20124024 \times \frac{1}{2} = 2012. The final answer is 2012\boxed{2012}.