Solveeit Logo

Question

Question: Let $w$ be a complex number such that $w^5 = 1$ but $w \neq -1$. Then $(1 + w)^{-1}$ is equal to...

Let ww be a complex number such that w5=1w^5 = 1 but w1w \neq -1. Then (1+w)1(1 + w)^{-1} is equal to

A

12(1w+w2w3+w4)\frac{1}{2}(1 - w + w^2 - w^3 + w^4)

B

1w+w2w3+w41 - w + w^2 - w^3 + w^4

C

1+w+w2+w3+w41 + w + w^2 + w^3 + w^4

D

12(1+ww2+w3w4)\frac{1}{2}(1 + w - w^2 + w^3 - w^4)

Answer

A

Explanation

Solution

The problem requires finding the value of (1+w)1(1 + w)^{-1} given that ww is a complex number satisfying w5=1w^5 = 1 and w1w \neq -1.

The condition w5=1w^5 = 1 indicates that ww is a fifth root of unity. The roots of the equation z51=0z^5 - 1 = 0 are given by wk=ei2πk5w_k = e^{i \frac{2\pi k}{5}} for k=0,1,2,3,4k = 0, 1, 2, 3, 4. These roots are 1,ei2π/5,ei4π/5,ei6π/5,ei8π/51, e^{i 2\pi/5}, e^{i 4\pi/5}, e^{i 6\pi/5}, e^{i 8\pi/5}. The condition w1w \neq -1 is satisfied by all fifth roots of unity, as (1)5=11(-1)^5 = -1 \neq 1.

We can factor the polynomial w51w^5 - 1 as (w1)(w4+w3+w2+w+1)=0(w-1)(w^4 + w^3 + w^2 + w + 1) = 0.

If w=1w = 1, then (1+w)1=(1+1)1=12(1 + w)^{-1} = (1 + 1)^{-1} = \frac{1}{2}. Let's check the options for w=1w=1: A. 12(11+1213+14)=12(1)=12\frac{1}{2}(1 - 1 + 1^2 - 1^3 + 1^4) = \frac{1}{2}(1) = \frac{1}{2}. B. 11+1213+14=11 - 1 + 1^2 - 1^3 + 1^4 = 1. C. 1+1+12+13+14=51 + 1 + 1^2 + 1^3 + 1^4 = 5. D. 12(1+112+1314)=12(1)=12\frac{1}{2}(1 + 1 - 1^2 + 1^3 - 1^4) = \frac{1}{2}(1) = \frac{1}{2}. Both A and D yield 12\frac{1}{2} when w=1w=1.

If w1w \neq 1, then ww is one of the other four fifth roots of unity, and it satisfies w4+w3+w2+w+1=0w^4 + w^3 + w^2 + w + 1 = 0.

Consider option A: 12(1w+w2w3+w4)\frac{1}{2}(1 - w + w^2 - w^3 + w^4). This expression is 12\frac{1}{2} times the sum of a geometric series with first term 11, ratio w-w, and 55 terms: Sum =1(1(w)5)1(w)=1(w5)1+w= \frac{1 \cdot (1 - (-w)^5)}{1 - (-w)} = \frac{1 - (-w^5)}{1+w}. Since w5=1w^5 = 1, the sum is 1(1)1+w=21+w\frac{1 - (-1)}{1+w} = \frac{2}{1+w}. Therefore, 12(1w+w2w3+w4)=12(21+w)=(1+w)1\frac{1}{2}(1 - w + w^2 - w^3 + w^4) = \frac{1}{2} \left( \frac{2}{1+w} \right) = (1+w)^{-1}. This confirms that option A is correct for all ww such that w5=1w^5 = 1.

Consider option D: 12(1+ww2+w3w4)\frac{1}{2}(1 + w - w^2 + w^3 - w^4). Let's multiply (1+w)(1+w) by this expression: (1+w)12(1+ww2+w3w4)(1+w) \cdot \frac{1}{2}(1 + w - w^2 + w^3 - w^4) =12[(1+w)(1+ww2+w3w4)]= \frac{1}{2} [(1+w)(1 + w - w^2 + w^3 - w^4)] =12[1(1+ww2+w3w4)+w(1+ww2+w3w4)]= \frac{1}{2} [1(1 + w - w^2 + w^3 - w^4) + w(1 + w - w^2 + w^3 - w^4)] =12[(1+ww2+w3w4)+(w+w2w3+w4w5)]= \frac{1}{2} [(1 + w - w^2 + w^3 - w^4) + (w + w^2 - w^3 + w^4 - w^5)] =12[1+(w+w)+(w2+w2)+(w3w3)+(w4+w4)w5]= \frac{1}{2} [1 + (w+w) + (-w^2+w^2) + (w^3-w^3) + (-w^4+w^4) - w^5] =12[1+2ww5]= \frac{1}{2} [1 + 2w - w^5] Since w5=1w^5 = 1, this simplifies to 12[1+2w1]=12[2w]=w\frac{1}{2} [1 + 2w - 1] = \frac{1}{2} [2w] = w. For this to be equal to (1+w)1(1+w)^{-1}, we would need w=(1+w)1w = (1+w)^{-1}, which implies w(1+w)=1w(1+w) = 1, so w+w2=1w + w^2 = 1. This is not generally true for all fifth roots of unity. However, if we want 12(1+ww2+w3w4)\frac{1}{2}(1 + w - w^2 + w^3 - w^4) to be equal to (1+w)1(1+w)^{-1}, then we need w=(1+w)1w = (1+w)^{-1}, which means w(1+w)=1w(1+w)=1. This is only true if w=1w=1 (since 1+12=211+1^2=2 \neq 1, this is actually not true even for w=1w=1).

Let's re-evaluate the product for option D: (1+w)×12(1+ww2+w3w4)=12(1+2ww5)=12(1+2w1)=w(1+w) \times \frac{1}{2}(1 + w - w^2 + w^3 - w^4) = \frac{1}{2} (1 + 2w - w^5) = \frac{1}{2}(1+2w-1) = w. So, (1+w)1=1w×12(1+ww2+w3w4)(1+w)^{-1} = \frac{1}{w} \times \frac{1}{2}(1 + w - w^2 + w^3 - w^4). For option D to be correct, we need 12(1+ww2+w3w4)=(1+w)1\frac{1}{2}(1 + w - w^2 + w^3 - w^4) = (1+w)^{-1}. This means 1w×12(1+ww2+w3w4)=12(1+ww2+w3w4)\frac{1}{w} \times \frac{1}{2}(1 + w - w^2 + w^3 - w^4) = \frac{1}{2}(1 + w - w^2 + w^3 - w^4), which implies 1w=1\frac{1}{w}=1, or w=1w=1. Thus, option D is only correct when w=1w=1.

Since option A is correct for all valid values of ww, it is the correct answer for this single-choice question.