Question
Question: Let $L_1$: $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $L_2$: $\frac{x-2}{3} = \frac{y-4}{4}...
Let L1: 2x−1=3y−2=4z−3 and L2: 3x−2=4y−4=5z−5 be two lines. Then which of the following points lies on the line of the shortest distance between L1 and L2?

(3−5,−7,1)
(2,3,31)
(38,−1,31)
(314,−3,322)
Option (4) (314,−3,322)
Solution
To find the point on the line of shortest distance between L1 and L2, we need to:
-
Parameterize the lines:
L1:P(1+2t,2+3t,3+4t)
L2:Q(2+3s,4+4s,5+5s)
-
Find the vector PQ:
PQ=Q−P=(1+3s−2t,2+4s−3t,2+5s−4t)
-
Apply perpendicularity conditions:
PQ⋅a=0 and PQ⋅b=0, where a=(2,3,4) and b=(3,4,5) are direction vectors of L1 and L2 respectively.
This gives us two equations:
2(1+3s−2t)+3(2+4s−3t)+4(2+5s−4t)=0⇒16+38s−29t=0
3(1+3s−2t)+4(2+4s−3t)+5(2+5s−4t)=0⇒21+50s−38t=0
-
Solve for s and t:
Solving the system of equations, we get s=−61 and t=31.
-
Find points P and Q:
P=(1+32,2+1,3+34)=(35,3,313)
Q=(2−21,4−32,5−65)=(23,310,625)
-
Determine the direction vector of the shortest distance line:
Q−P=(23−35,310−3,625−313)=(−61,31,−61)=61(−1,2,−1)
-
Parameterize the shortest distance line using point P:
R(t)=(35,3,313)+t(−1,2,−1)
-
Check the options:
For option (4): (314,−3,322)
35−t=314⇒t=−3
Check y: 3+2(−3)=−3
Check z: 313−(−3)=322
Since option (4) satisfies the parameterized equation, it lies on the line of shortest distance.