Solveeit Logo

Question

Question: Let L₁: $\overrightarrow{r}$ = ($\hat{i}$-$\hat{j}$+2$\hat{k}$)+$\lambda$($\hat{i}$-$\hat{j}$+2$\hat...

Let L₁: r\overrightarrow{r} = (i^\hat{i}-j^\hat{j}+2k^\hat{k})+λ\lambda(i^\hat{i}-j^\hat{j}+2k^\hat{k}), λϵ\lambda \epsilonR L₂: r\overrightarrow{r} = (j^\hat{j}-k^\hat{k})+μ\mu(3i^\hat{i}+j^\hat{j}+pk^\hat{k}), μϵ\mu \epsilon R, and L₃: r\overrightarrow{r} = δ\delta(li^\hat{i}+mj^\hat{j}+nk^\hat{k}), δϵ\delta \epsilon R be three lines such that L₁ is perpendicular to L₂ and L₃ is perpendicular to both L₁ and L₂. Then, the point which lies on L₃ is

A

(-1, 7, 4)

B

(-, 1-7, 4)

C

(1, 7, -4)

D

(1.-7.4)

Answer

(-1, 7, 4)

Explanation

Solution

The direction vector of L₁ is b1=i^j^+2k^\overrightarrow{b_1} = \hat{i}-\hat{j}+2\hat{k}. The direction vector of L₂ is b2=3i^+j^+pk^\overrightarrow{b_2} = 3\hat{i}+\hat{j}+p\hat{k}. Since L₁ ⊥ L₂, b1b2=0\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0. This gives 31+2p=03 - 1 + 2p = 0, so p=1p = -1. Thus, b2=3i^+j^k^\overrightarrow{b_2} = 3\hat{i}+\hat{j}-\hat{k}. The direction vector of L₃, b3=li^+mj^+nk^\overrightarrow{b_3} = l\hat{i}+m\hat{j}+n\hat{k}, is perpendicular to both L₁ and L₂. Thus, b3\overrightarrow{b_3} is parallel to b1×b2\overrightarrow{b_1} \times \overrightarrow{b_2}. b1×b2=i^j^k^112311=i^(12)j^(16)+k^(1+3)=i^+7j^+4k^\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & -1 \end{vmatrix} = \hat{i}(1-2) - \hat{j}(-1-6) + \hat{k}(1+3) = -\hat{i} + 7\hat{j} + 4\hat{k}. So, L₃ has the direction vector (1,7,4)(-1, 7, 4). Since L₃ passes through the origin, its equation is r=t(i^+7j^+4k^)\overrightarrow{r} = t(-\hat{i} + 7\hat{j} + 4\hat{k}). Checking the options, (-1, 7, 4) corresponds to t=1t=1 and lies on L₃.