Solveeit Logo

Question

Question: In the circuit shown in the figure, $R_{AB}=?$ ...

In the circuit shown in the figure,

RAB=?R_{AB}=?

A

214\frac{21}{4} Ω\Omega

B

56\frac{5}{6} Ω\Omega

C

10 Ω\Omega

D

8 Ω\Omega

Answer

214\frac{21}{4} Ω\Omega

Explanation

Solution

  1. Identify the circuit type: The circuit contains a bridge-like structure CDEF with two diagonals RCFR_{CF} (6Ω) and RDER_{DE} (6Ω).

  2. Check for balanced Wheatstone bridge: Consider the bridge C-D-F-E with RDER_{DE} as the central resistor. The arms are RCD=2ΩR_{CD}=2\Omega, RDF=6ΩR_{DF}=6\Omega, RCE=2ΩR_{CE}=2\Omega, REF=6ΩR_{EF}=6\Omega.

    The condition for a balanced bridge (no current through RDER_{DE}) is RCDRDF=RCEREF\frac{R_{CD}}{R_{DF}} = \frac{R_{CE}}{R_{EF}}.

    Substituting the values: 26=26\frac{2}{6} = \frac{2}{6}, which simplifies to 13=13\frac{1}{3} = \frac{1}{3}.

    Since the condition is met, the bridge is balanced. This means the potential at node D is equal to the potential at node E (VD=VEV_D = V_E).

  3. Simplify the circuit by removing the balanced arm and merging nodes: Since VD=VEV_D = V_E, no current flows through the 6Ω resistor between D and E. This resistor can be removed. Furthermore, since D and E are at the same potential, they can be merged into a single node, let's call it D'.

  4. Redraw the simplified circuit and calculate equivalent resistances:

    • The 2Ω resistor (RCDR_{CD}) and 2Ω resistor (RCER_{CE}) are now in parallel between C and D'.

      RCD=2×22+2=1ΩR_{CD'} = \frac{2 \times 2}{2 + 2} = 1 \, \Omega.

    • The 6Ω resistor (RDFR_{DF}) and 6Ω resistor (REFR_{EF}) are now in parallel between D' and F.

      RDF=6×66+6=3ΩR_{D'F} = \frac{6 \times 6}{6 + 6} = 3 \, \Omega.

    • The 6Ω resistor (RCFR_{CF}) remains connected between C and F.

    The circuit now consists of:

    • RAC=2ΩR_{AC} = 2 \, \Omega
    • RBD=2ΩR_{BD'} = 2 \, \Omega
    • RCD=1ΩR_{CD'} = 1 \, \Omega
    • RDF=3ΩR_{D'F} = 3 \, \Omega
    • RCF=6ΩR_{CF} = 6 \, \Omega
  5. Apply Nodal Analysis: Let VB=0V_B = 0 and VA=VV_A = V. Let VC,VD,VFV_C, V_{D'}, V_F be the potentials at nodes C, D', F respectively.

    • Node C: VAVC2=VCVD1+VCVF6\frac{V_A - V_C}{2} = \frac{V_C - V_{D'}}{1} + \frac{V_C - V_F}{6}

      Multiplying by 6: 3(VAVC)=6(VCVD)+(VCVF)3(V_A - V_C) = 6(V_C - V_{D'}) + (V_C - V_F)

      3VA=10VC6VDVF3V_A = 10V_C - 6V_{D'} - V_F (Eq. 1)

    • Node D': VCVD1=VDVB2+VDVF3\frac{V_C - V_{D'}}{1} = \frac{V_{D'} - V_B}{2} + \frac{V_{D'} - V_F}{3}

      Multiplying by 6: 6(VCVD)=3(VD0)+2(VDVF)6(V_C - V_{D'}) = 3(V_{D'} - 0) + 2(V_{D'} - V_F)

      6VC=11VD2VF6V_C = 11V_{D'} - 2V_F (Eq. 2)

    • Node F: VCVF6+VDVF3=0\frac{V_C - V_F}{6} + \frac{V_{D'} - V_F}{3} = 0

      Multiplying by 6: (VCVF)+2(VDVF)=0(V_C - V_F) + 2(V_{D'} - V_F) = 0

      VC+2VD=3VFV_C + 2V_{D'} = 3V_F (Eq. 3)

  6. Solve the system of equations:

    From Eq. 3: VF=VC+2VD3V_F = \frac{V_C + 2V_{D'}}{3}

    Substitute VFV_F into Eq. 2:

    6VC=11VD2(VC+2VD3)6V_C = 11V_{D'} - 2\left(\frac{V_C + 2V_{D'}}{3}\right)

    18VC=33VD2VC4VD18V_C = 33V_{D'} - 2V_C - 4V_{D'}

    20VC=29VD    VD=2029VC20V_C = 29V_{D'} \implies V_{D'} = \frac{20}{29}V_C

    Substitute VDV_{D'} into VFV_F:

    VF=VC+2(2029VC)3=VC(1+4029)3=VC(6929)3=2329VCV_F = \frac{V_C + 2\left(\frac{20}{29}V_C\right)}{3} = \frac{V_C\left(1 + \frac{40}{29}\right)}{3} = \frac{V_C\left(\frac{69}{29}\right)}{3} = \frac{23}{29}V_C

    Substitute VDV_{D'} and VFV_F into Eq. 1:

    3VA=10VC6(2029VC)2329VC3V_A = 10V_C - 6\left(\frac{20}{29}V_C\right) - \frac{23}{29}V_C

    3VA=VC(10120292329)=VC(2901202329)=VC(14729)3V_A = V_C\left(10 - \frac{120}{29} - \frac{23}{29}\right) = V_C\left(\frac{290 - 120 - 23}{29}\right) = V_C\left(\frac{147}{29}\right)

    VC=3×29147VA=87147VA=2949VAV_C = \frac{3 \times 29}{147}V_A = \frac{87}{147}V_A = \frac{29}{49}V_A

  7. Calculate the total current and equivalent resistance:

    The total current flowing from A to B is IAB=IAC=VAVC2I_{AB} = I_{AC} = \frac{V_A - V_C}{2}.

    IAB=VA2949VA2=VA(492949)2=VA(2049)2=10VA49I_{AB} = \frac{V_A - \frac{29}{49}V_A}{2} = \frac{V_A\left(\frac{49 - 29}{49}\right)}{2} = \frac{V_A\left(\frac{20}{49}\right)}{2} = \frac{10V_A}{49}.

    The equivalent resistance RAB=VAVBIAB=VA0IAB=VA10VA49=4910=4.9ΩR_{AB} = \frac{V_A - V_B}{I_{AB}} = \frac{V_A - 0}{I_{AB}} = \frac{V_A}{\frac{10V_A}{49}} = \frac{49}{10} = 4.9 \, \Omega.

  8. Compare with options:

    (A) 214=5.25Ω\frac{21}{4} = 5.25 \, \Omega (B) 560.83Ω\frac{5}{6} \approx 0.83 \, \Omega (C) 10Ω10 \, \Omega (D) 8Ω8 \, \Omega

    The calculated value 4.9Ω4.9 \, \Omega is closest to option (A) 5.25Ω5.25 \, \Omega.

The final answer is A\boxed{\text{A}}