Solveeit Logo

Question

Question: If $L = \lim_{x \to 1} \frac{(1-x)(1-x^2)(1-x^3)....(1-x^{2n})}{[(1-x)(1-x^2)(1-x^3)....(1-x^n)]^2}$...

If L=limx1(1x)(1x2)(1x3)....(1x2n)[(1x)(1x2)(1x3)....(1xn)]2L = \lim_{x \to 1} \frac{(1-x)(1-x^2)(1-x^3)....(1-x^{2n})}{[(1-x)(1-x^2)(1-x^3)....(1-x^n)]^2} then L can be equal to

Answer

(2nn)\binom{2n}{n}

Explanation

Solution

The given limit is L=limx1(1x)(1x2)(1x3)....(1x2n)[(1x)(1x2)(1x3)....(1xn)]2L = \lim_{x \to 1} \frac{(1-x)(1-x^2)(1-x^3)....(1-x^{2n})}{[(1-x)(1-x^2)(1-x^3)....(1-x^n)]^2}.

We can rewrite the term (1xk)(1-x^k) using the factorization 1xk=(1x)(1+x+x2+...+xk1)1-x^k = (1-x)(1+x+x^2+...+x^{k-1}).

Let the numerator be N(x)=k=12n(1xk)N(x) = \prod_{k=1}^{2n} (1-x^k). Using the factorization, N(x)=k=12n[(1x)(1+x+...+xk1)]N(x) = \prod_{k=1}^{2n} [(1-x)(1+x+...+x^{k-1})]. N(x)=(1x)2nk=12n(1+x+...+xk1)N(x) = (1-x)^{2n} \prod_{k=1}^{2n} (1+x+...+x^{k-1}).

Let the denominator be D(x)=[k=1n(1xk)]2D(x) = [\prod_{k=1}^{n} (1-x^k)]^2. Using the factorization, k=1n(1xk)=k=1n[(1x)(1+x+...+xk1)]\prod_{k=1}^{n} (1-x^k) = \prod_{k=1}^{n} [(1-x)(1+x+...+x^{k-1})]. k=1n(1xk)=(1x)nk=1n(1+x+...+xk1)\prod_{k=1}^{n} (1-x^k) = (1-x)^n \prod_{k=1}^{n} (1+x+...+x^{k-1}). So, D(x)=[(1x)nk=1n(1+x+...+xk1)]2=(1x)2n[k=1n(1+x+...+xk1)]2D(x) = [(1-x)^n \prod_{k=1}^{n} (1+x+...+x^{k-1})]^2 = (1-x)^{2n} [\prod_{k=1}^{n} (1+x+...+x^{k-1})]^2.

Now substitute these back into the expression for L: L=limx1(1x)2nk=12n(1+x+...+xk1)(1x)2n[k=1n(1+x+...+xk1)]2L = \lim_{x \to 1} \frac{(1-x)^{2n} \prod_{k=1}^{2n} (1+x+...+x^{k-1})}{(1-x)^{2n} [\prod_{k=1}^{n} (1+x+...+x^{k-1})]^2}.

We can cancel the (1x)2n(1-x)^{2n} terms, assuming x1x \ne 1: L=limx1k=12n(1+x+...+xk1)[k=1n(1+x+...+xk1)]2L = \lim_{x \to 1} \frac{\prod_{k=1}^{2n} (1+x+...+x^{k-1})}{[\prod_{k=1}^{n} (1+x+...+x^{k-1})]^2}.

Now, we evaluate the limit of each term (1+x+...+xk1)(1+x+...+x^{k-1}) as x1x \to 1. limx1(1+x+...+xk1)=1+1+...+1\lim_{x \to 1} (1+x+...+x^{k-1}) = 1+1+...+1 (k times) =k= k.

Since the limit of each factor exists and is finite, the limit of the product is the product of the limits. The numerator limit is k=12n(limx1(1+x+...+xk1))=k=12nk=123...(2n)=(2n)!\prod_{k=1}^{2n} (\lim_{x \to 1} (1+x+...+x^{k-1})) = \prod_{k=1}^{2n} k = 1 \cdot 2 \cdot 3 \cdot ... \cdot (2n) = (2n)!.

The denominator limit is [k=1n(limx1(1+x+...+xk1))]2=[k=1nk]2=[123...n]2=(n!)2[\prod_{k=1}^{n} (\lim_{x \to 1} (1+x+...+x^{k-1}))]^2 = [\prod_{k=1}^{n} k]^2 = [1 \cdot 2 \cdot 3 \cdot ... \cdot n]^2 = (n!)^2.

So, the limit L is: L=(2n)!(n!)2L = \frac{(2n)!}{(n!)^2}.

This expression is the definition of the binomial coefficient (2nn)\binom{2n}{n}. L=(2nn)L = \binom{2n}{n}.