Solveeit Logo

Question

Question: A random variable $x$ has following probability distribution ...

A random variable xx has following probability distribution

A

18\frac{1}{8}

B

32\frac{3}{2}

C

12\frac{1}{2}

D

14\frac{1}{4}

Answer

18\frac{1}{8}

Explanation

Solution

Given the probabilities for xx:

K,16,38,2K,112K,\, \frac{1}{6},\, \frac{3}{8},\, 2K,\, \frac{1}{12}

Since these must sum to 1:

K+16+38+2K+112=1K + \frac{1}{6} + \frac{3}{8} + 2K + \frac{1}{12} = 1

Combine KK terms:

3K+(16+38+112)=13K + \left(\frac{1}{6} + \frac{3}{8} + \frac{1}{12}\right)= 1

Find a common denominator for the fractions (LCM of 6, 8, 12 is 24):

16=424,38=924,112=224\frac{1}{6} = \frac{4}{24}, \quad \frac{3}{8} = \frac{9}{24}, \quad \frac{1}{12} = \frac{2}{24}

Thus:

424+924+224=1524=58\frac{4}{24} + \frac{9}{24} + \frac{2}{24} = \frac{15}{24} = \frac{5}{8}

So, we have:

3K+58=13K=158=383K + \frac{5}{8} = 1 \quad \Longrightarrow \quad 3K = 1 - \frac{5}{8} = \frac{3}{8}

Thus:

K=38÷3=18K = \frac{3}{8} \div 3 = \frac{1}{8}