Solveeit Logo

Question

Question: A hyperbola intersects an ellipse $x^2 + 9y^2 = 9$ orthogonally. The eccentricity of the hyperbola i...

A hyperbola intersects an ellipse x2+9y2=9x^2 + 9y^2 = 9 orthogonally. The eccentricity of the hyperbola is reciprocal of that of ellipse. If the axes of the hyperbola are along coordinate axes, then

A

vertices of hyperbola are (±83,0)(\pm \frac{8}{3}, 0)

B

y coordinate of point of intersection of ellipse and hyperbola is either 13\frac{1}{3} or 13-\frac{1}{3}

C

latus rectum of hyperbola is 23\frac{2}{3}

D

latus rectum of hyperbola is 43\frac{4}{3}

Answer

Options (A), (B), and (C)

Explanation

Solution

  1. Ellipse:
    The given ellipse is

    x2+9y2=9x29+y21=1.x^2+9y^2=9 \quad\Longrightarrow\quad \frac{x^2}{9}+\frac{y^2}{1}=1.

    So a=3a=3, b=1b=1 and its eccentricity is

    eellipse=1b2a2=119=223.e_{\text{ellipse}}=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{1}{9}}=\frac{2\sqrt{2}}{3}.
  2. Hyperbola:
    Its eccentricity is given as the reciprocal of that of the ellipse

    ehyp=322.e_{\text{hyp}}=\frac{3}{2\sqrt{2}}.

    For a hyperbola with axes along the coordinate axes and equation

    x2a2y2b2=1,\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,

    the eccentricity is

    ehyp=1+b2a2.e_{\text{hyp}}=\sqrt{1+\frac{b^2}{a^2}}.

    Equate:

    1+b2a2=3221+b2a2=98b2a2=18.\sqrt{1+\frac{b^2}{a^2}}=\frac{3}{2\sqrt{2}}\quad\Longrightarrow\quad 1+\frac{b^2}{a^2}=\frac{9}{8}\quad\Longrightarrow\quad \frac{b^2}{a^2}=\frac{1}{8}.

    Hence,

    b2=a28.b^2=\frac{a^2}{8}.
  3. Orthogonality Condition: At a common point (x,y)(x,y), the product of slopes of tangents to the ellipse and hyperbola must be 1-1.

    • For the ellipse, x2+9y2=9x^2+9y^2=9:
      Differentiating:

      2x+18yy=0y=x9y.2x+18yy'=0\quad\Longrightarrow\quad y'=-\frac{x}{9y}.
    • For the hyperbola, first write its equation as

      x2a2y2(a2/8)=1x28y2=a2.\frac{x^2}{a^2}-\frac{y^2}{(a^2/8)}=1 \quad\Longrightarrow\quad x^2-8y^2=a^2.

      Differentiating:

      2x16yy=0y=x8y.2x-16yy'=0\quad\Longrightarrow\quad y'=\frac{x}{8y}.

    Orthogonality requires:

    (x9y)(x8y)=1x272y2=1x2=72y2.\left(-\frac{x}{9y}\right)\left(\frac{x}{8y}\right)=-1\quad\Longrightarrow\quad \frac{x^2}{72y^2}=1 \quad\Longrightarrow\quad x^2=72y^2.

    Substitute x2=72y2x^2=72y^2 into the ellipse equation:

    72y2+9y2=981y2=9y2=19y=±13.72y^2+9y^2=9\quad\Longrightarrow\quad 81y^2=9\quad\Longrightarrow\quad y^2=\frac{1}{9}\quad\Longrightarrow\quad y=\pm\frac{1}{3}.
  4. Finding aa (and vertices):
    Choose a point of intersection and substitute back into the hyperbola. Using x2=72y2x^2=72y^2 with y2=19y^2=\frac{1}{9}:

    x2=72(19)=8.x^2=72\left(\frac{1}{9}\right)=8.

    Now using the hyperbola equation x28y2=a2x^2-8y^2=a^2:

    a2=88(19)=8(119)=889=649.a^2=8-8\left(\frac{1}{9}\right)=8\left(1-\frac{1}{9}\right)=8\cdot\frac{8}{9}=\frac{64}{9}.

    So,

    a=83.a=\frac{8}{3}.

    Thus, the vertices are (±83,0)\left(\pm\frac{8}{3},0\right).

  5. Latus Rectum of the Hyperbola:
    For the hyperbola, the latus rectum length is given by:

    L=2b2a.L=\frac{2b^2}{a}.

    We already have b2=a28=64/98=89b^2=\frac{a^2}{8}=\frac{64/9}{8}=\frac{8}{9}. So,

    L=28983=16/98/3=16938=4872=23.L=\frac{2\cdot\frac{8}{9}}{\frac{8}{3}}=\frac{16/9}{8/3}=\frac{16}{9}\cdot\frac{3}{8}=\frac{48}{72}=\frac{2}{3}.