Solveeit Logo

Question

Question: A ball of mass $m = 0.5$ kg is moving with 10 m/s in positive x-direction in free space. At $t = 0$,...

A ball of mass m=0.5m = 0.5 kg is moving with 10 m/s in positive x-direction in free space. At t=0t = 0, forces F1F_1 in the negative x-direction and F2F_2 in the positive y-direction are applied on the ball. These forces vary with time as shown in the given graph.

(a) Determine the velocity of the particle at the end of instant 3 s.

(b) Determine the instant when x-coordinate of the ball achieves maximum positive value.

Answer

(a) (1i^+9j^)(-1\hat{i} + 9\hat{j}) m/s, (b) 222\sqrt{2} s

Explanation

Solution

The problem involves analyzing the motion of a ball under the influence of time-varying forces using the impulse-momentum theorem.

Given:

  • Mass of the ball, m=0.5m = 0.5 kg
  • Initial velocity, v0=10i^\vec{v}_0 = 10 \hat{i} m/s (in positive x-direction).

The impulse-momentum theorem states that the change in momentum (Δp\Delta \vec{p}) of an object is equal to the impulse (J\vec{J}) applied to it:

Δp=J\Delta \vec{p} = \vec{J} m(vfvi)=Fdtm(\vec{v}_f - \vec{v}_i) = \int \vec{F} dt

This can be applied component-wise:

m(vfxvix)=Fxdtm(v_{fx} - v_{ix}) = \int F_x dt m(vfyviy)=Fydtm(v_{fy} - v_{iy}) = \int F_y dt

From the graph:

  • Force F1F_1 acts in the negative x-direction, so Fx=F1F_x = -F_1.
  • Force F2F_2 acts in the positive y-direction, so Fy=F2F_y = F_2.

Part (a): Determine the velocity of the particle at the end of instant 3 s.

1. Calculate impulse in x-direction (JxJ_x):

Jx=03Fxdt=03F1dtJ_x = \int_0^3 F_x dt = -\int_0^3 F_1 dt.

The integral 03F1dt\int_0^3 F_1 dt is the area under the F1F_1 vs time graph from t=0t=0 to t=3t=3 s.

This area can be divided into three parts:

  • Area from t=0t=0 to t=1t=1 s (rectangle): A1=1 N×1 s=1 NsA_1 = 1 \text{ N} \times 1 \text{ s} = 1 \text{ Ns}.
  • Area from t=1t=1 to t=2t=2 s (rectangle): A2=2 N×1 s=2 NsA_2 = 2 \text{ N} \times 1 \text{ s} = 2 \text{ Ns}.
  • Area from t=2t=2 to t=3t=3 s (trapezoid): A3=12(2 N+3 N)×(32) s=12(5 N)×1 s=2.5 NsA_3 = \frac{1}{2} (2 \text{ N} + 3 \text{ N}) \times (3-2) \text{ s} = \frac{1}{2} (5 \text{ N}) \times 1 \text{ s} = 2.5 \text{ Ns}.

Total area under F1F_1 curve = A1+A2+A3=1+2+2.5=5.5 NsA_1 + A_2 + A_3 = 1 + 2 + 2.5 = 5.5 \text{ Ns}.

So, Jx=5.5 NsJ_x = -5.5 \text{ Ns}.

2. Calculate final x-velocity (vx(3s)v_x(3s)):

m(vx(3s)v0x)=Jxm(v_x(3s) - v_{0x}) = J_x 0.5 kg(vx(3s)10 m/s)=5.5 Ns0.5 \text{ kg} (v_x(3s) - 10 \text{ m/s}) = -5.5 \text{ Ns} vx(3s)10=5.5/0.5=11 m/sv_x(3s) - 10 = -5.5 / 0.5 = -11 \text{ m/s} vx(3s)=1011=1 m/sv_x(3s) = 10 - 11 = -1 \text{ m/s}.

3. Calculate impulse in y-direction (JyJ_y):

Jy=03Fydt=03F2dtJ_y = \int_0^3 F_y dt = \int_0^3 F_2 dt.

The integral 03F2dt\int_0^3 F_2 dt is the area under the F2F_2 vs time graph from t=0t=0 to t=3t=3 s.

This area can be divided into two parts:

  • Area from t=0t=0 to t=2t=2 s (rectangle): A1=1 N×2 s=2 NsA_1 = 1 \text{ N} \times 2 \text{ s} = 2 \text{ Ns}.
  • Area from t=2t=2 to t=3t=3 s (trapezoid): A2=12(1 N+4 N)×(32) s=12(5 N)×1 s=2.5 NsA_2 = \frac{1}{2} (1 \text{ N} + 4 \text{ N}) \times (3-2) \text{ s} = \frac{1}{2} (5 \text{ N}) \times 1 \text{ s} = 2.5 \text{ Ns}.

Total area under F2F_2 curve = A1+A2=2+2.5=4.5 NsA_1 + A_2 = 2 + 2.5 = 4.5 \text{ Ns}.

So, Jy=4.5 NsJ_y = 4.5 \text{ Ns}.

4. Calculate final y-velocity (vy(3s)v_y(3s)):

Initial y-velocity v0y=0v_{0y} = 0.

m(vy(3s)v0y)=Jym(v_y(3s) - v_{0y}) = J_y 0.5 kg(vy(3s)0)=4.5 Ns0.5 \text{ kg} (v_y(3s) - 0) = 4.5 \text{ Ns} vy(3s)=4.5/0.5=9 m/sv_y(3s) = 4.5 / 0.5 = 9 \text{ m/s}.

5. Determine the velocity vector at 3 s:

v(3s)=vx(3s)i^+vy(3s)j^=(1i^+9j^) m/s\vec{v}(3s) = v_x(3s) \hat{i} + v_y(3s) \hat{j} = (-1 \hat{i} + 9 \hat{j}) \text{ m/s}.

Part (b): Determine the instant when x-coordinate of the ball achieves maximum positive value.

The x-coordinate of the ball achieves its maximum positive value when its x-component of velocity (vxv_x) becomes zero. After this point, vxv_x will become negative due to the continuous application of F1F_1 in the negative x-direction.

We set vx(t)=0v_x(t) = 0:

vx(t)=v0x+1m0tFxdtv_x(t) = v_{0x} + \frac{1}{m} \int_0^t F_x dt 0=10 m/s+10.5 kg0t(F1)dt0 = 10 \text{ m/s} + \frac{1}{0.5 \text{ kg}} \int_0^t (-F_1) dt 0=1020tF1dt0 = 10 - 2 \int_0^t F_1 dt 20tF1dt=102 \int_0^t F_1 dt = 10 0tF1dt=5 Ns\int_0^t F_1 dt = 5 \text{ Ns}.

We need to find the time tt when the cumulative area under the F1F_1 vs time graph reaches 5 Ns5 \text{ Ns}.

  • Area from t=0t=0 to t=1t=1 s: 1 Ns1 \text{ Ns}.
  • Area from t=0t=0 to t=2t=2 s: 1 Ns+(2 N×1 s)=3 Ns1 \text{ Ns} + (2 \text{ N} \times 1 \text{ s}) = 3 \text{ Ns}.

Since 3 Ns<5 Ns3 \text{ Ns} < 5 \text{ Ns}, the time tt must be greater than 2 s2 \text{ s}.

Let this time be tmt_m. The additional area needed is 5 Ns3 Ns=2 Ns5 \text{ Ns} - 3 \text{ Ns} = 2 \text{ Ns}.

This additional area must be accumulated in the interval [2 s,tm][2 \text{ s}, t_m].

In the interval t[2,3 s]t \in [2, 3 \text{ s}], the force F1(t)F_1(t) varies linearly.

At t=2t=2 s, F1=2F_1 = 2 N. At t=3t=3 s, F1=3F_1 = 3 N.

The equation for the line passing through (2,2)(2,2) and (3,3)(3,3) is F1(t)=tF_1(t) = t. (For t[2,3]t \in [2, 3])

Now, we calculate the integral from 22 to tmt_m:

2tmF1(t)dt=2 Ns\int_2^{t_m} F_1(t) dt = 2 \text{ Ns} 2tmtdt=2\int_2^{t_m} t dt = 2 [t22]2tm=2\left[ \frac{t^2}{2} \right]_2^{t_m} = 2 tm22222=2\frac{t_m^2}{2} - \frac{2^2}{2} = 2 tm222=2\frac{t_m^2}{2} - 2 = 2 tm22=4\frac{t_m^2}{2} = 4 tm2=8t_m^2 = 8 tm=8=22 st_m = \sqrt{8} = 2\sqrt{2} \text{ s}.

Since 222.8282\sqrt{2} \approx 2.828 s, which is within the range [2,3][2, 3] s, this is a valid time.