Solveeit Logo

Question

Question: A 1.96% solution of H₂SO₄ in water freezes at – 0.794°C. If Kf of water is 1.86 K kg/mol and density...

A 1.96% solution of H₂SO₄ in water freezes at – 0.794°C. If Kf of water is 1.86 K kg/mol and density of solution is 1.0 g/mL, the value of ionization constant for the following reaction is

HSO₄ ⇌ H+ + SO₄2-

A

0.146

B

3.3×10-3

C

2×10-4

D

5×10-6

Answer

3.3×10-3

Explanation

Solution

The freezing point depression is ΔTf=0C(0.794C)=0.794C\Delta T_f = 0^\circ C - (-0.794^\circ C) = 0.794^\circ C.

The percentage concentration of H₂SO₄ is 1.96% by weight.

Mass of H₂SO₄ = 1.96 g. Mass of solution = 100 g. Mass of water = 100 - 1.96 = 98.04 g = 0.09804 kg.

Molar mass of H₂SO₄ = 98 g/mol. Moles of H₂SO₄ = 1.9698=0.02\frac{1.96}{98} = 0.02 mol.

Molality m0=0.02 mol0.09804 kg0.203998 mol/kgm_0 = \frac{0.02 \text{ mol}}{0.09804 \text{ kg}} \approx 0.203998 \text{ mol/kg}.

The freezing point depression is related to molality by ΔTf=i×Kf×m0\Delta T_f = i \times K_f \times m_0.

0.794=i×1.86×0.2039980.794 = i \times 1.86 \times 0.203998.

i=0.7941.86×0.2039982.0926i = \frac{0.794}{1.86 \times 0.203998} \approx 2.0926.

H₂SO₄ dissociates as H₂SO₄ → H⁺ + HSO₄⁻ (complete) and HSO₄⁻ ⇌ H⁺ + SO₄²⁻ (partial, degree of dissociation α\alpha).

The van't Hoff factor is i=2+αi = 2 + \alpha.

2.0926=2+α    α=0.09262.0926 = 2 + \alpha \implies \alpha = 0.0926.

The ionization constant for HSO₄⁻ ⇌ H⁺ + SO₄²⁻ is Ka=[H+][SO42][HSO4]K_a = \frac{[H⁺][SO₄²⁻]}{[HSO₄⁻]}.

Using molalities at equilibrium: [H+]=m0(1+α)[H⁺] = m_0(1+\alpha), [SO42]=m0α[SO₄²⁻] = m_0\alpha, [HSO4]=m0(1α)[HSO₄⁻] = m_0(1-\alpha).

Ka=m0(1+α)m0αm0(1α)=m0α(1+α)1αK_a = \frac{m_0(1+\alpha)m_0\alpha}{m_0(1-\alpha)} = \frac{m_0\alpha(1+\alpha)}{1-\alpha}.

Ka=0.203998×0.0926×(1+0.0926)10.0926=0.203998×0.0926×1.09260.90740.02277K_a = \frac{0.203998 \times 0.0926 \times (1+0.0926)}{1-0.0926} = \frac{0.203998 \times 0.0926 \times 1.0926}{0.9074} \approx 0.02277.

This calculated value does not match any of the given options. Let's check which option for KaK_a results in a freezing point depression closest to the given value (0.794).

Option (b): Ka=3.3×103=0.0033K_a = 3.3 \times 10^{-3} = 0.0033.

Let's find α\alpha using Ka=m0α(1+α)1αK_a = \frac{m_0\alpha(1+\alpha)}{1-\alpha} with m0=0.203998m_0 = 0.203998.

0.0033=0.203998α(1+α)1α0.0033 = \frac{0.203998 \alpha(1+\alpha)}{1-\alpha}.

0.0033(1α)=0.203998α+0.203998α20.0033(1-\alpha) = 0.203998\alpha + 0.203998\alpha^2.

0.203998α2+0.207298α0.0033=00.203998\alpha^2 + 0.207298\alpha - 0.0033 = 0.

Solving for α\alpha: α0.01583\alpha \approx 0.01583.

i=2+α=2.01583i = 2 + \alpha = 2.01583.

ΔTf=i×Kf×m0=2.01583×1.86×0.2039980.7636\Delta T_f = i \times K_f \times m_0 = 2.01583 \times 1.86 \times 0.203998 \approx 0.7636.

The difference from the given ΔTf=0.794\Delta T_f = 0.794 is 0.7940.7636=0.0304|0.794 - 0.7636| = 0.0304.

Let's check option (a): Ka=0.146K_a = 0.146.

Solving 0.146=0.203998α(1+α)1α0.146 = \frac{0.203998 \alpha(1+\alpha)}{1-\alpha} gives α0.3468\alpha \approx 0.3468.

i=2+α=2.3468i = 2 + \alpha = 2.3468.

ΔTf=i×Kf×m0=2.3468×1.86×0.2039980.888\Delta T_f = i \times K_f \times m_0 = 2.3468 \times 1.86 \times 0.203998 \approx 0.888.

The difference from the given ΔTf=0.794\Delta T_f = 0.794 is 0.7940.888=0.094|0.794 - 0.888| = 0.094.

Comparing the differences, option (b) provides a ΔTf\Delta T_f value that is closer to the given value than option (a). While the calculated KaK_a (0.02277) from the given data does not match any option, option (b) is the closest fit in terms of resulting colligative property. This suggests that option (b) is the intended answer, assuming a slight error in the problem data.

The final answer is 3.3×103\boxed{3.3×10^{-3}}.