Question
Question: If $(1 + x + x^2 + ... + x^9)^4 (x + x^2 + x^3 + ... + x^9)$ $\displaystyle = \sum_{r=1}^{45} a_r x^...
If (1+x+x2+...+x9)4(x+x2+x3+...+x9) =r=1∑45arxr and the value of a2+a6+a10+...+a42 is λ, the sum of all digits of λ is

9
Solution
To find the sum of coefficients a2+a6+a10+...+a42, we use the property of roots of unity. Let the given expression be P(x). P(x)=(1+x+x2+...+x9)4(x+x2+x3+...+x9)
Let S(x)=1+x+x2+...+x9. This is a geometric series sum: S(x)=x−1x10−1. The second term is x+x2+...+x9=x(1+x+...+x8). Notice that x+x2+...+x9=(1+x+...+x9)−1=S(x)−1. So, P(x)=(S(x))4(S(x)−1).
We are given P(x)=∑r=145arxr. We need to find λ=a2+a6+a10+...+a42. The indices are of the form 4k+2. This means we need the sum of coefficients ar where r≡2(mod4).
For a polynomial Q(x)=∑r=0Narxr, the sum of coefficients ak+ak+m+ak+2m+... is given by the formula: m1∑j=0m−1ω−kjQ(ωj), where ω=e2πi/m. In our case, Q(x)=P(x), m=4, and k=2. So, λ=41[ω−2⋅0P(ω0)+ω−2⋅1P(ω1)+ω−2⋅2P(ω2)+ω−2⋅3P(ω3)]. Here ω=e2πi/4=i. λ=41[P(1)+i−2P(i)+i−4P(i2)+i−6P(i3)] Since i2=−1, i4=1, i6=−1: λ=41[P(1)−P(i)+P(−1)−P(−i)].
Now, we need to evaluate S(x) at x=1,−1,i,−i.
-
S(1)=1+1+...+1 (10 terms) =10.
-
S(−1)=1−1+1−1+...+1−1 (10 terms) =0.
-
S(i)=i−1i10−1=i−1(i4)2i2−1=i−112(−1)−1=i−1−2. To simplify: i−1−2×i+1i+1=i2−1−2(i+1)=−1−1−2(i+1)=−2−2(i+1)=i+1.
-
S(−i)=−i−1(−i)10−1=−i−1i10−1=−i−1−1−1=−(i+1)−2=i+12. To simplify: i+12×1−i1−i=1−i22(1−i)=1−(−1)2(1−i)=22(1−i)=1−i.
Next, evaluate P(x)=(S(x))4(S(x)−1) at x=1,−1,i,−i.
-
P(1)=(S(1))4(S(1)−1)=(10)4(10−1)=10000×9=90000.
-
P(−1)=(S(−1))4(S(−1)−1)=(0)4(0−1)=0.
-
P(i)=(S(i))4(S(i)−1)=(i+1)4(i+1−1)=(i+1)4(i). We know (i+1)2=i2+2i+1=−1+2i+1=2i. So (i+1)4=(2i)2=4i2=−4. Therefore, P(i)=(−4)(i)=−4i.
-
P(−i)=(S(−i))4(S(−i)−1)=(1−i)4(1−i−1)=(1−i)4(−i). We know (1−i)2=1−2i+i2=1−2i−1=−2i. So (1−i)4=(−2i)2=4i2=−4. Therefore, P(−i)=(−4)(−i)=4i.
Finally, substitute these values into the formula for λ: λ=41[P(1)−P(i)+P(−1)−P(−i)] λ=41[90000−(−4i)+0−(4i)] λ=41[90000+4i−4i] λ=41[90000] λ=22500.
The question asks for the sum of all digits of λ. Sum of digits of λ=2+2+5+0+0=9.
The final answer is 9.