Solveeit Logo

Question

Question: If the integral $\int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}}$ = $\frac{a}{9}(\frac{x-1}{x+2})^{1/4} + C...

If the integral dx(x1)3(x+2)54\int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}} = a9(x1x+2)1/4+C\frac{a}{9}(\frac{x-1}{x+2})^{1/4} + C then aa is equal (where CC is a constant of integration)

Answer

12

Explanation

Solution

To solve the integral dx(x1)3(x+2)54\int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}}, we first rewrite the expression using fractional exponents: I=dx(x1)3/4(x+2)5/4I = \int \frac{dx}{(x-1)^{3/4}(x+2)^{5/4}}

This is a common type of integral where the substitution t=x1x+2t = \frac{x-1}{x+2} is effective. Let t=x1x+2t = \frac{x-1}{x+2}. To find dtdt, we differentiate tt with respect to xx: dtdx=(1)(x+2)(x1)(1)(x+2)2=x+2x+1(x+2)2=3(x+2)2\frac{dt}{dx} = \frac{(1)(x+2) - (x-1)(1)}{(x+2)^2} = \frac{x+2-x+1}{(x+2)^2} = \frac{3}{(x+2)^2}. So, dx=(x+2)23dtdx = \frac{(x+2)^2}{3} dt.

Now, we need to express the integrand in terms of tt. The original denominator is (x1)3/4(x+2)5/4(x-1)^{3/4}(x+2)^{5/4}. We can manipulate this to involve (x1x+2)\left(\frac{x-1}{x+2}\right): (x1)3/4(x+2)5/4=(x1)3/4(x+2)3/4(x+2)2/4(x-1)^{3/4}(x+2)^{5/4} = (x-1)^{3/4}(x+2)^{3/4}(x+2)^{2/4} =(x1x+2)3/4(x+2)3/4(x+2)1/2= \left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^{3/4}(x+2)^{1/2} =(x1x+2)3/4(x+2)3/4+1/2= \left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^{3/4+1/2} =(x1x+2)3/4(x+2)5/4= \left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^{5/4}. This is just the original denominator.

The key is to rearrange the integrand to get terms of tt and dtdt. We have dx=(x+2)23dtdx = \frac{(x+2)^2}{3} dt. This means we need a term of (x+2)2(x+2)^2 in the denominator to replace it with dtdt. Let's rewrite the integral as: I=1(x1)3/4(x+2)5/4dxI = \int \frac{1}{(x-1)^{3/4}(x+2)^{5/4}} dx Divide the numerator and denominator by (x+2)3/4(x+2)^{3/4}: I=1(x+2)3/4(x1)3/4(x+2)3/4(x+2)5/4dxI = \int \frac{\frac{1}{(x+2)^{3/4}}}{\frac{(x-1)^{3/4}}{(x+2)^{3/4}}(x+2)^{5/4}} dx I=1(x1x+2)3/4(x+2)5/4(x+2)3/4dxI = \int \frac{1}{\left(\frac{x-1}{x+2}\right)^{3/4} (x+2)^{5/4} (x+2)^{-3/4}} dx I=1(x1x+2)3/4(x+2)5/43/4dxI = \int \frac{1}{\left(\frac{x-1}{x+2}\right)^{3/4} (x+2)^{5/4-3/4}} dx I=1(x1x+2)3/4(x+2)2/4dxI = \int \frac{1}{\left(\frac{x-1}{x+2}\right)^{3/4} (x+2)^{2/4}} dx I=1(x1x+2)3/4(x+2)1/2dxI = \int \frac{1}{\left(\frac{x-1}{x+2}\right)^{3/4} (x+2)^{1/2}} dx

This manipulation is not leading to the required form for dtdt. Let's try a direct approach by factoring out (x+2)(x+2) from the denominator such that we can form (x1x+2)\left(\frac{x-1}{x+2}\right). I=dx(x1)3/4(x+2)5/4I = \int \frac{dx}{(x-1)^{3/4}(x+2)^{5/4}} Factor out (x+2)3/4(x+2)^{3/4} from (x+2)5/4(x+2)^{5/4} and combine it with (x1)3/4(x-1)^{3/4}: I=dx(x1)3/4(x+2)3/4(x+2)2/4I = \int \frac{dx}{(x-1)^{3/4}(x+2)^{3/4}(x+2)^{2/4}} I=dx(x1x+2)3/4(x+2)3/4(x+2)1/2I = \int \frac{dx}{\left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^{3/4}(x+2)^{1/2}} I=dx(x1x+2)3/4(x+2)3/4+1/2I = \int \frac{dx}{\left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^{3/4+1/2}} I=dx(x1x+2)3/4(x+2)5/4I = \int \frac{dx}{\left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^{5/4}}

This is also not helpful. The most straightforward way is to prepare the integrand for the substitution t=x1x+2t = \frac{x-1}{x+2} and dx=(x+2)23dtdx = \frac{(x+2)^2}{3} dt. We need to get 1(x+2)2\frac{1}{(x+2)^2} in the integrand. The denominator is (x1)3/4(x+2)5/4(x-1)^{3/4}(x+2)^{5/4}. We can write (x+2)5/4=(x+2)8/4(x+2)3/4=(x+2)2(x+2)3/4(x+2)^{5/4} = (x+2)^{8/4} (x+2)^{-3/4} = (x+2)^2 (x+2)^{-3/4}. So, the integral becomes: I=dx(x1)3/4(x+2)2(x+2)3/4I = \int \frac{dx}{(x-1)^{3/4} (x+2)^2 (x+2)^{-3/4}} I=dx(x+2)2(x1)3/4(x+2)3/4I = \int \frac{dx}{(x+2)^2 \frac{(x-1)^{3/4}}{(x+2)^{3/4}}} I=1(x1x+2)3/4dx(x+2)2I = \int \frac{1}{\left(\frac{x-1}{x+2}\right)^{3/4}} \frac{dx}{(x+2)^2}

Now, substitute t=x1x+2t = \frac{x-1}{x+2} and dx(x+2)2=13dt\frac{dx}{(x+2)^2} = \frac{1}{3} dt: I=1t3/413dtI = \int \frac{1}{t^{3/4}} \cdot \frac{1}{3} dt I=13t3/4dtI = \frac{1}{3} \int t^{-3/4} dt

Now, integrate t3/4t^{-3/4}: I=13(t3/4+13/4+1)+CI = \frac{1}{3} \left( \frac{t^{-3/4+1}}{-3/4+1} \right) + C I=13(t1/41/4)+CI = \frac{1}{3} \left( \frac{t^{1/4}}{1/4} \right) + C I=134t1/4+CI = \frac{1}{3} \cdot 4 t^{1/4} + C I=43t1/4+CI = \frac{4}{3} t^{1/4} + C

Substitute back t=x1x+2t = \frac{x-1}{x+2}: I=43(x1x+2)1/4+CI = \frac{4}{3} \left(\frac{x-1}{x+2}\right)^{1/4} + C

The problem states that the integral is equal to a9(x1x+2)1/4+C\frac{a}{9}(\frac{x-1}{x+2})^{1/4} + C. Comparing our result with the given form: 43(x1x+2)1/4+C=a9(x1x+2)1/4+C\frac{4}{3} \left(\frac{x-1}{x+2}\right)^{1/4} + C = \frac{a}{9} \left(\frac{x-1}{x+2}\right)^{1/4} + C Equating the coefficients: 43=a9\frac{4}{3} = \frac{a}{9} a=43×9a = \frac{4}{3} \times 9 a=4×3a = 4 \times 3 a=12a = 12

The final answer is 12\boxed{12}.

Explanation: The integral dx(x1)3(x+2)54\int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}} is transformed by factoring the denominator to create a term of the form (x1x+2)\left(\frac{x-1}{x+2}\right) and a term that can be absorbed into the differential dxdx. The integral is rewritten as 1(x1x+2)3/4dx(x+2)2\int \frac{1}{\left(\frac{x-1}{x+2}\right)^{3/4}} \frac{dx}{(x+2)^2}. A substitution t=x1x+2t = \frac{x-1}{x+2} is made, leading to dtdx=3(x+2)2\frac{dt}{dx} = \frac{3}{(x+2)^2}, so dx(x+2)2=13dt\frac{dx}{(x+2)^2} = \frac{1}{3} dt. The integral simplifies to 13t3/4dt\frac{1}{3} \int t^{-3/4} dt. Integrating yields 13t1/41/4+C=43t1/4+C\frac{1}{3} \frac{t^{1/4}}{1/4} + C = \frac{4}{3} t^{1/4} + C. Substituting back t=x1x+2t = \frac{x-1}{x+2}, we get 43(x1x+2)1/4+C\frac{4}{3} \left(\frac{x-1}{x+2}\right)^{1/4} + C. Comparing this with the given form a9(x1x+2)1/4+C\frac{a}{9}(\frac{x-1}{x+2})^{1/4} + C, we find a9=43\frac{a}{9} = \frac{4}{3}, which gives a=12a=12.