Solveeit Logo

Question

Question: $n$ moles of He gas is placed in a vessel of volume $V$ L at $T$ K. If $V_1$ is free volume of He, t...

nn moles of He gas is placed in a vessel of volume VV L at TT K. If V1V_1 is free volume of He, then the diameter of He atom is

A

(a) (3V12πNAn)13\left(\frac{3V_1}{2\pi N_A n}\right)^{\frac{1}{3}}

B

(b) (3(VV1)2πNAn)13\left(\frac{3(V-V_1)}{2\pi N_A n}\right)^{\frac{1}{3}}

C

(c) (6(VV1)πNAn)13\left(\frac{6(V-V_1)}{\pi N_A n}\right)^{\frac{1}{3}}

D

(d) (6V1πNAn)13\left(\frac{6V_1}{\pi N_A n}\right)^{\frac{1}{3}}

Answer

(c) (6(VV1)πNAn)13\left(\frac{6(V-V_1)}{\pi N_A n}\right)^{\frac{1}{3}}

Explanation

Solution

The volume occupied by nn moles of He atoms is VV1V - V_1. This volume equals nNAvatomn N_A v_{atom}, where vatomv_{atom} is the volume of a single atom. Thus, vatom=VV1nNAv_{atom} = \frac{V - V_1}{n N_A}. Assuming the atom is a sphere with radius rr, vatom=43πr3v_{atom} = \frac{4}{3}\pi r^3. Equating these, 43πr3=VV1nNA\frac{4}{3}\pi r^3 = \frac{V - V_1}{n N_A}. Solving for the diameter d=2rd = 2r, we get d=(6(VV1)πnNA)1/3d = \left(\frac{6(V - V_1)}{\pi n N_A}\right)^{1/3}.