Question
Question: Let $P(x)$ be a polynomial of degree 4 having a local maximum at $x=2$ and $\lim_{x\to0} (3-\frac{P(...
Let P(x) be a polynomial of degree 4 having a local maximum at x=2 and limx→0(3−xP(x))=27. If P(1)=−9 and P′′(x) has a local maximum at x=2. If global maximum value of y=P′(x) on the set A={x:x2+12≤7x} is k, then the value of k is

24
12
36
48
24
Solution
Let P(x)=a4x4+a3x3+a2x2+a1x+a0. From limx→0(3−xP(x))=27, we get P(0)=0 and P′(0)=−24. Thus, a0=0 and a1=−24. P(1)=−9⟹a4+a3+a2+a1+a0=−9⟹a4+a3+a2−24=−9⟹a4+a3+a2=15. P′(x)=4a4x3+3a3x2+2a2x+a1. P′(2)=0⟹32a4+12a3+4a2−24=0⟹8a4+3a3+a2=6. P′′(x)=12a4x2+6a3x+2a2. For P′′(x) to have a local maximum at x=2, P′′′(2)=0 and P(4)(2)≤0. P′′′(x)=24a4x+6a3. P′′′(2)=0⟹48a4+6a3=0⟹a3=−8a4. P(4)(x)=24a4. P(4)(2)≤0⟹24a4≤0⟹a4≤0. Substituting a3=−8a4 into a4+a3+a2=15 and 8a4+3a3+a2=6: −7a4+a2=15 and −16a4+a2=6. Subtracting the two equations: 9a4=9⟹a4=1. This contradicts a4≤0. Assuming the question meant P′′(x) has a local minimum at x=2, then a4≥0, so a4=1 is valid. If a4=1, then a3=−8, and a2=15+7a4=15+7=22. P′(x)=4x3−24x2+44x−24. The set A={x:x2+12≤7x}⟹x2−7x+12≤0⟹(x−3)(x−4)≤0⟹x∈[3,4]. We need to find the maximum of P′(x) on [3,4]. P′′(x)=12x2−48x+44. The roots of P′′(x)=0 are x=2±33, which are not in [3,4]. Since P′′(3)=12(9)−48(3)+44=108−144+44=8>0, P′(x) is increasing on [3,4]. The maximum value of P′(x) occurs at x=4. k=P′(4)=4(43)−24(42)+44(4)−24=256−384+176−24=24.
