Solveeit Logo

Question

Question: Let $P(x)$ be a polynomial of degree 4 having a local maximum at $x=2$ and $\lim_{x\to0} (3-\frac{P(...

Let P(x)P(x) be a polynomial of degree 4 having a local maximum at x=2x=2 and limx0(3P(x)x)=27.\lim_{x\to0} (3-\frac{P(x)}{x}) = 27. If P(1)=9P(1)=-9 and P(x)P''(x) has a local maximum at x=2x=2. If global maximum value of y=P(x)y=P'(x) on the set A={x:x2+127x}A=\{x:x^2+12\le7x\} is kk, then the value of kk is

A

24

B

12

C

36

D

48

Answer

24

Explanation

Solution

Let P(x)=a4x4+a3x3+a2x2+a1x+a0P(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0. From limx0(3P(x)x)=27\lim_{x\to0} (3-\frac{P(x)}{x}) = 27, we get P(0)=0P(0)=0 and P(0)=24P'(0)=-24. Thus, a0=0a_0=0 and a1=24a_1=-24. P(1)=9    a4+a3+a2+a1+a0=9    a4+a3+a224=9    a4+a3+a2=15P(1)=-9 \implies a_4+a_3+a_2+a_1+a_0 = -9 \implies a_4+a_3+a_2-24= -9 \implies a_4+a_3+a_2=15. P(x)=4a4x3+3a3x2+2a2x+a1P'(x) = 4a_4x^3 + 3a_3x^2 + 2a_2x + a_1. P(2)=0    32a4+12a3+4a224=0    8a4+3a3+a2=6P'(2)=0 \implies 32a_4+12a_3+4a_2-24=0 \implies 8a_4+3a_3+a_2=6. P(x)=12a4x2+6a3x+2a2P''(x) = 12a_4x^2 + 6a_3x + 2a_2. For P(x)P''(x) to have a local maximum at x=2x=2, P(2)=0P'''(2)=0 and P(4)(2)0P^{(4)}(2) \le 0. P(x)=24a4x+6a3P'''(x) = 24a_4x + 6a_3. P(2)=0    48a4+6a3=0    a3=8a4P'''(2)=0 \implies 48a_4+6a_3=0 \implies a_3=-8a_4. P(4)(x)=24a4P^{(4)}(x) = 24a_4. P(4)(2)0    24a40    a40P^{(4)}(2) \le 0 \implies 24a_4 \le 0 \implies a_4 \le 0. Substituting a3=8a4a_3=-8a_4 into a4+a3+a2=15a_4+a_3+a_2=15 and 8a4+3a3+a2=68a_4+3a_3+a_2=6: 7a4+a2=15-7a_4+a_2=15 and 16a4+a2=6-16a_4+a_2=6. Subtracting the two equations: 9a4=9    a4=19a_4=9 \implies a_4=1. This contradicts a40a_4 \le 0. Assuming the question meant P(x)P''(x) has a local minimum at x=2x=2, then a40a_4 \ge 0, so a4=1a_4=1 is valid. If a4=1a_4=1, then a3=8a_3=-8, and a2=15+7a4=15+7=22a_2=15+7a_4 = 15+7=22. P(x)=4x324x2+44x24P'(x) = 4x^3 - 24x^2 + 44x - 24. The set A={x:x2+127x}    x27x+120    (x3)(x4)0    x[3,4]A=\{x:x^2+12\le7x\} \implies x^2-7x+12 \le 0 \implies (x-3)(x-4) \le 0 \implies x \in [3,4]. We need to find the maximum of P(x)P'(x) on [3,4][3,4]. P(x)=12x248x+44P''(x) = 12x^2 - 48x + 44. The roots of P(x)=0P''(x)=0 are x=2±33x = 2 \pm \frac{\sqrt{3}}{3}, which are not in [3,4][3,4]. Since P(3)=12(9)48(3)+44=108144+44=8>0P''(3) = 12(9) - 48(3) + 44 = 108 - 144 + 44 = 8 > 0, P(x)P'(x) is increasing on [3,4][3,4]. The maximum value of P(x)P'(x) occurs at x=4x=4. k=P(4)=4(43)24(42)+44(4)24=256384+17624=24k = P'(4) = 4(4^3) - 24(4^2) + 44(4) - 24 = 256 - 384 + 176 - 24 = 24.