Solveeit Logo

Question

Question: The volume of 0.10 M-AgNO$_3$ should be added to 10.0 ml of 0.09 M-K$_2$CrO$_4$ to precipitate all t...

The volume of 0.10 M-AgNO3_3 should be added to 10.0 ml of 0.09 M-K2_2CrO4_4 to precipitate all the chromate as Ag2_2CrO4_4 is

A

18 ml

B

27 ml

C

9 ml

D

36 ml

Answer

18 ml

Explanation

Solution

The precipitation reaction between silver nitrate (AgNO3AgNO_3) and potassium chromate (K2CrO4K_2CrO_4) to form silver chromate (Ag2CrO4Ag_2CrO_4) is: 2Ag+(aq)+CrO42(aq)Ag2CrO4(s)2Ag^+(aq) + CrO_4^{2-}(aq) \rightarrow Ag_2CrO_4(s) From the stoichiometry, 2 moles of Ag+Ag^+ are required for every 1 mole of CrO42CrO_4^{2-}.

  1. Calculate moles of chromate ions (CrO42CrO_4^{2-}): The volume of K2CrO4K_2CrO_4 solution is 10.0 ml, which is 0.0100.010 L. The molarity of K2CrO4K_2CrO_4 solution is 0.090.09 M. Moles of K2CrO4K_2CrO_4 = Molarity ×\times Volume Moles of K2CrO4K_2CrO_4 = 0.09mol/L×0.010L=0.0009mol0.09 \, \text{mol/L} \times 0.010 \, \text{L} = 0.0009 \, \text{mol}. Since K2CrO4K_2CrO_4 dissociates into 2K+2K^+ and CrO42CrO_4^{2-}, the moles of CrO42CrO_4^{2-} are equal to the moles of K2CrO4K_2CrO_4. Moles of CrO42CrO_4^{2-} = 0.0009mol0.0009 \, \text{mol}.

  2. Calculate moles of silver ions (Ag+Ag^+) required: Based on the stoichiometry (2:12:1 ratio of Ag+Ag^+ to CrO42CrO_4^{2-}), the moles of Ag+Ag^+ required are: Moles of Ag+Ag^+ = 2×Moles of CrO422 \times \text{Moles of } CrO_4^{2-} Moles of Ag+Ag^+ = 2×0.0009mol=0.0018mol2 \times 0.0009 \, \text{mol} = 0.0018 \, \text{mol}.

  3. Calculate the volume of AgNO3AgNO_3 solution: The molarity of the AgNO3AgNO_3 solution is 0.100.10 M. Let VV be the volume of AgNO3AgNO_3 solution in liters. Moles of Ag+Ag^+ from AgNO3AgNO_3 = Molarity of AgNO3×AgNO_3 \times Volume of AgNO3AgNO_3 0.0018mol=0.10mol/L×V0.0018 \, \text{mol} = 0.10 \, \text{mol/L} \times V V=0.0018mol0.10mol/L=0.018LV = \frac{0.0018 \, \text{mol}}{0.10 \, \text{mol/L}} = 0.018 \, \text{L}.

  4. Convert volume to milliliters: V=0.018L×1000ml/L=18mlV = 0.018 \, \text{L} \times 1000 \, \text{ml/L} = 18 \, \text{ml}.