Solveeit Logo

Question

Question: If $\int \frac{e^x}{e^{2x}+6e^x+5}dx = -\frac{1}{4} \log_e (\frac{e^x+a}{e^x+b})+c$, then $\frac{|a-...

If exe2x+6ex+5dx=14loge(ex+aex+b)+c\int \frac{e^x}{e^{2x}+6e^x+5}dx = -\frac{1}{4} \log_e (\frac{e^x+a}{e^x+b})+c, then ab4\frac{|a-b|}{4} is ...

A

1

B

3

C

4

D

15

Answer

1

Explanation

Solution

To solve the integral exe2x+6ex+5dx\int \frac{e^x}{e^{2x}+6e^x+5}dx, we use a substitution.

Let t=ext = e^x. Then, dt=exdxdt = e^x dx.

Substitute these into the integral: exe2x+6ex+5dx=dtt2+6t+5\int \frac{e^x}{e^{2x}+6e^x+5}dx = \int \frac{dt}{t^2+6t+5}

Now, factor the quadratic in the denominator: t2+6t+5=(t+1)(t+5)t^2+6t+5 = (t+1)(t+5)

So the integral becomes: dt(t+1)(t+5)\int \frac{dt}{(t+1)(t+5)}

We use partial fraction decomposition for the integrand 1(t+1)(t+5)\frac{1}{(t+1)(t+5)}. Let 1(t+1)(t+5)=At+1+Bt+5\frac{1}{(t+1)(t+5)} = \frac{A}{t+1} + \frac{B}{t+5} Multiply both sides by (t+1)(t+5)(t+1)(t+5): 1=A(t+5)+B(t+1)1 = A(t+5) + B(t+1)

To find AA, set t=1t=-1: 1=A(1+5)+B(1+1)1 = A(-1+5) + B(-1+1) 1=4A    A=141 = 4A \implies A = \frac{1}{4}

To find BB, set t=5t=-5: 1=A(5+5)+B(5+1)1 = A(-5+5) + B(-5+1) 1=4B    B=141 = -4B \implies B = -\frac{1}{4}

Substitute the values of AA and BB back into the partial fraction form: 1(t+1)(t+5)=1/4t+11/4t+5\frac{1}{(t+1)(t+5)} = \frac{1/4}{t+1} - \frac{1/4}{t+5}

Now, integrate: (1/4t+11/4t+5)dt=14(1t+11t+5)dt\int \left( \frac{1/4}{t+1} - \frac{1/4}{t+5} \right) dt = \frac{1}{4} \int \left( \frac{1}{t+1} - \frac{1}{t+5} \right) dt =14(loget+1loget+5)+c= \frac{1}{4} \left( \log_e |t+1| - \log_e |t+5| \right) + c Using the logarithm property logXlogY=log(X/Y)\log X - \log Y = \log(X/Y): =14loget+1t+5+c= \frac{1}{4} \log_e \left| \frac{t+1}{t+5} \right| + c

Substitute back t=ext = e^x. Since ex>0e^x > 0, ex+1e^x+1 and ex+5e^x+5 are always positive, so we can remove the absolute value signs: exe2x+6ex+5dx=14loge(ex+1ex+5)+c\int \frac{e^x}{e^{2x}+6e^x+5}dx = \frac{1}{4} \log_e \left( \frac{e^x+1}{e^x+5} \right) + c

The problem states that the integral is equal to 14loge(ex+aex+b)+c-\frac{1}{4} \log_e (\frac{e^x+a}{e^x+b})+c. We need to equate our result with the given form: 14loge(ex+1ex+5)=14loge(ex+aex+b)\frac{1}{4} \log_e \left( \frac{e^x+1}{e^x+5} \right) = -\frac{1}{4} \log_e \left( \frac{e^x+a}{e^x+b} \right) Multiply both sides by 4: loge(ex+1ex+5)=loge(ex+aex+b)\log_e \left( \frac{e^x+1}{e^x+5} \right) = - \log_e \left( \frac{e^x+a}{e^x+b} \right) Using the logarithm property logX=log(1/X)-\log X = \log(1/X): loge(ex+1ex+5)=loge((ex+aex+b)1)\log_e \left( \frac{e^x+1}{e^x+5} \right) = \log_e \left( \left( \frac{e^x+a}{e^x+b} \right)^{-1} \right) loge(ex+1ex+5)=loge(ex+bex+a)\log_e \left( \frac{e^x+1}{e^x+5} \right) = \log_e \left( \frac{e^x+b}{e^x+a} \right) Comparing the arguments of the logarithm: ex+1ex+5=ex+bex+a\frac{e^x+1}{e^x+5} = \frac{e^x+b}{e^x+a} By comparing the numerators and denominators, we find: b=1b=1 a=5a=5

Finally, we need to calculate ab4\frac{|a-b|}{4}: ab4=514=44=44=1\frac{|a-b|}{4} = \frac{|5-1|}{4} = \frac{|4|}{4} = \frac{4}{4} = 1

The final answer is 1.