Solveeit Logo

Question

Question: 70. If arccos(sqrt(cos alpha)) * arctan(sqrt(cos alpha)) = x then the value of sin x is...

  1. If arccos(sqrt(cos alpha)) * arctan(sqrt(cos alpha)) = x then the value of sin x is
Answer

sin x = sin{arccos(sqrt(cos alpha)) * arctan(sqrt(cos alpha))}

Explanation

Solution

We start with

x=arccos(cosα)arctan(cosα).x=\arccos\Bigl(\sqrt{\cos\alpha}\Bigr)\cdot \arctan\Bigl(\sqrt{\cos\alpha}\Bigr).

There is no standard trigonometric identity that “combines” a product of an inverse‐cosine and an inverse‐tangent into a simpler function. In other words, without additional restrictions on the parameter α\alpha (or further information) the expression for xx cannot be simplified further so that sinx\sin x can be written in a “nice” form.

Thus one acceptable answer is to simply write

sinx=sin{arccos(cosα)arctan(cosα)}.\sin x=\sin\Bigl\{\arccos\Bigl(\sqrt{\cos\alpha}\Bigr)\cdot \arctan\Bigl(\sqrt{\cos\alpha}\Bigr)\Bigr\}.

Any answer equivalent to the above is correct.