Solveeit Logo

Question

Question: Which of the following expressions give(s) unit magnitude?...

Which of the following expressions give(s) unit magnitude?

A

a+ba+b\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}

B

a^+b^|\hat{a}+\hat{b}| when angle between a\overrightarrow{a} and b\overrightarrow{b} is 120120^{\circ}

C

a^b^a^b^\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}

D

a^b^|\hat{a}-\hat{b}| when angle between a\overrightarrow{a} and b\overrightarrow{b} is 6060^{\circ}

Answer

(A), (B), (C), (D)

Explanation

Solution

Let's analyze each option:

(A) a+ba+b\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}

This expression represents a vector. Let v=a+b\overrightarrow{v} = \overrightarrow{a}+\overrightarrow{b}. The expression is vv\frac{\overrightarrow{v}}{|\overrightarrow{v}|}. This is the definition of a unit vector in the direction of v\overrightarrow{v}, provided v0\overrightarrow{v} \neq \overrightarrow{0}. The magnitude of a unit vector is always 1. So, if a+b0\overrightarrow{a}+\overrightarrow{b} \neq \overrightarrow{0}, the magnitude of this expression is 1. If a+b=0\overrightarrow{a}+\overrightarrow{b} = \overrightarrow{0}, the expression is undefined. Assuming the expression is well-defined, it gives a unit magnitude.

(B) a^+b^|\hat{a}+\hat{b}| when angle between a\overrightarrow{a} and b\overrightarrow{b} is 120120^{\circ}.

Here, a^\hat{a} and b^\hat{b} are unit vectors, so a^=1|\hat{a}| = 1 and b^=1|\hat{b}| = 1. The angle between a^\hat{a} and b^\hat{b} is given as θ=120\theta = 120^{\circ}.

The magnitude of the sum of two vectors is given by u+v=u2+v2+2uvcosθ|\vec{u}+\vec{v}| = \sqrt{|\vec{u}|^2 + |\vec{v}|^2 + 2|\vec{u}||\vec{v}|\cos\theta}.

a^+b^=a^2+b^2+2a^b^cos(120)|\hat{a}+\hat{b}| = \sqrt{|\hat{a}|^2 + |\hat{b}|^2 + 2|\hat{a}||\hat{b}|\cos(120^{\circ})}

a^+b^=12+12+2(1)(1)cos(120)|\hat{a}+\hat{b}| = \sqrt{1^2 + 1^2 + 2(1)(1)\cos(120^{\circ})}

a^+b^=1+1+2(12)|\hat{a}+\hat{b}| = \sqrt{1 + 1 + 2(-\frac{1}{2})}

a^+b^=21=1=1|\hat{a}+\hat{b}| = \sqrt{2 - 1} = \sqrt{1} = 1.

The expression gives the scalar value 1, whose magnitude is 1.

(C) a^b^a^b^\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}

This expression represents a vector. Let w=a^b^\overrightarrow{w} = \hat{a}-\hat{b}. The expression is ww\frac{\overrightarrow{w}}{|\overrightarrow{w}|}. This is the definition of a unit vector in the direction of w\overrightarrow{w}, provided w0\overrightarrow{w} \neq \overrightarrow{0}. The magnitude of a unit vector is always 1. So, if a^b^0\hat{a}-\hat{b} \neq \overrightarrow{0} (i.e., a^b^\hat{a} \neq \hat{b}), the magnitude of this expression is 1. If a^=b^\hat{a} = \hat{b}, the expression is undefined. Assuming the expression is well-defined, it gives a unit magnitude.

(D) a^b^|\hat{a}-\hat{b}| when angle between a\overrightarrow{a} and b\overrightarrow{b} is 6060^{\circ}.

Here, a^\hat{a} and b^\hat{b} are unit vectors, so a^=1|\hat{a}| = 1 and b^=1|\hat{b}| = 1. The angle between a^\hat{a} and b^\hat{b} is given as θ=60\theta = 60^{\circ}.

The magnitude of the difference of two vectors is given by uv=u2+v22uvcosθ|\vec{u}-\vec{v}| = \sqrt{|\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\theta}.

a^b^=a^2+b^22a^b^cos(60)|\hat{a}-\hat{b}| = \sqrt{|\hat{a}|^2 + |\hat{b}|^2 - 2|\hat{a}||\hat{b}|\cos(60^{\circ})}

a^b^=12+122(1)(1)cos(60)|\hat{a}-\hat{b}| = \sqrt{1^2 + 1^2 - 2(1)(1)\cos(60^{\circ})}

a^b^=1+12(12)|\hat{a}-\hat{b}| = \sqrt{1 + 1 - 2(\frac{1}{2})}

a^b^=21=1=1|\hat{a}-\hat{b}| = \sqrt{2 - 1} = \sqrt{1} = 1.

The expression gives the scalar value 1, whose magnitude is 1.

All four expressions, when well-defined or under the given conditions, result in a quantity with a magnitude of 1. The question asks which expressions give unit magnitude, implying potentially multiple correct options.