Solveeit Logo

Question

Question: There exists a unique triple $(a,b,c)$ of positive real numbers that satisfies the equations $2(a^2...

There exists a unique triple (a,b,c)(a,b,c) of positive real numbers that satisfies the equations

2(a2+1)=3(b2+1)=4(c2+1)2(a^2+1) = 3(b^2+1) = 4(c^2+1) and ab+bc+ca=1ab+bc+ca = 1.

Compute a+b+ca+b+c.

Answer

92323\frac{9\sqrt{23}}{23}

Explanation

Solution

Let the common value of the first equation be KK. 2(a2+1)=3(b2+1)=4(c2+1)=K2(a^2+1) = 3(b^2+1) = 4(c^2+1) = K

From this, we can express a2,b2,c2a^2, b^2, c^2 in terms of KK: 2a2+2=Ka2=K222a^2+2 = K \Rightarrow a^2 = \frac{K-2}{2} 3b2+3=Kb2=K333b^2+3 = K \Rightarrow b^2 = \frac{K-3}{3} 4c2+4=Kc2=K444c^2+4 = K \Rightarrow c^2 = \frac{K-4}{4}

Since a,b,ca,b,c are positive real numbers, we must have a2>0,b2>0,c2>0a^2 > 0, b^2 > 0, c^2 > 0. This implies: K2>0K>2K-2 > 0 \Rightarrow K > 2 K3>0K>3K-3 > 0 \Rightarrow K > 3 K4>0K>4K-4 > 0 \Rightarrow K > 4 Combining these, we must have K>4K > 4.

Now, we can write a,b,ca,b,c as: a=K22a = \sqrt{\frac{K-2}{2}} b=K33b = \sqrt{\frac{K-3}{3}} c=K44c = \sqrt{\frac{K-4}{4}}

To simplify the second equation ab+bc+ca=1ab+bc+ca=1, we use a trigonometric substitution. Let a=tanxa = \tan x, b=tanyb = \tan y, c=tanzc = \tan z. Since a,b,c>0a,b,c > 0, we can choose x,y,z(0,π/2)x,y,z \in (0, \pi/2). Then a2+1=tan2x+1=sec2x=1cos2xa^2+1 = \tan^2 x + 1 = \sec^2 x = \frac{1}{\cos^2 x}. b2+1=sec2y=1cos2yb^2+1 = \sec^2 y = \frac{1}{\cos^2 y}. c2+1=sec2z=1cos2zc^2+1 = \sec^2 z = \frac{1}{\cos^2 z}.

Substitute these into the first equation: 2cos2x=3cos2y=4cos2z=K\frac{2}{\cos^2 x} = \frac{3}{\cos^2 y} = \frac{4}{\cos^2 z} = K This gives: cos2x=2K\cos^2 x = \frac{2}{K} cos2y=3K\cos^2 y = \frac{3}{K} cos2z=4K\cos^2 z = \frac{4}{K}

Since x,y,z(0,π/2)x,y,z \in (0, \pi/2), cosx,cosy,cosz\cos x, \cos y, \cos z are positive. cosx=2K\cos x = \sqrt{\frac{2}{K}} cosy=3K\cos y = \sqrt{\frac{3}{K}} cosz=4K\cos z = \sqrt{\frac{4}{K}}

Now we find sinx,siny,sinz\sin x, \sin y, \sin z: sin2x=1cos2x=12K=K2Ksinx=K2K\sin^2 x = 1 - \cos^2 x = 1 - \frac{2}{K} = \frac{K-2}{K} \Rightarrow \sin x = \sqrt{\frac{K-2}{K}} sin2y=1cos2y=13K=K3Ksiny=K3K\sin^2 y = 1 - \cos^2 y = 1 - \frac{3}{K} = \frac{K-3}{K} \Rightarrow \sin y = \sqrt{\frac{K-3}{K}} sin2z=1cos2z=14K=K4Ksinz=K4K\sin^2 z = 1 - \cos^2 z = 1 - \frac{4}{K} = \frac{K-4}{K} \Rightarrow \sin z = \sqrt{\frac{K-4}{K}}

The second equation is ab+bc+ca=1ab+bc+ca = 1. In terms of x,y,zx,y,z: tanxtany+tanytanz+tanztanx=1\tan x \tan y + \tan y \tan z + \tan z \tan x = 1. This is a known trigonometric identity that holds if x+y+z=π2x+y+z = \frac{\pi}{2} (since x,y,z(0,π/2)x,y,z \in (0, \pi/2), their sum must be in (0,3π/2)(0, 3\pi/2), and π2\frac{\pi}{2} is the only possibility for this identity to hold true).

So, we have x+y+z=π2x+y+z = \frac{\pi}{2}. This implies z=π2(x+y)z = \frac{\pi}{2} - (x+y). Taking cosine on both sides: cosz=cos(π2(x+y))=sin(x+y)\cos z = \cos\left(\frac{\pi}{2} - (x+y)\right) = \sin(x+y) Using the sine addition formula: sin(x+y)=sinxcosy+cosxsiny\sin(x+y) = \sin x \cos y + \cos x \sin y. So, cosz=sinxcosy+cosxsiny\cos z = \sin x \cos y + \cos x \sin y.

Substitute the expressions in terms of KK: 4K=K2K3K+2KK3K\sqrt{\frac{4}{K}} = \sqrt{\frac{K-2}{K}}\sqrt{\frac{3}{K}} + \sqrt{\frac{2}{K}}\sqrt{\frac{K-3}{K}} 2K=3(K2)KK+2(K3)KK\frac{2}{\sqrt{K}} = \frac{\sqrt{3(K-2)}}{\sqrt{K}\sqrt{K}} + \frac{\sqrt{2(K-3)}}{\sqrt{K}\sqrt{K}} Multiply by KK: 2K=3(K2)+2(K3)2\sqrt{K} = \sqrt{3(K-2)} + \sqrt{2(K-3)} Square both sides: (2K)2=(3K6+2K6)2(2\sqrt{K})^2 = (\sqrt{3K-6} + \sqrt{2K-6})^2 4K=(3K6)+(2K6)+2(3K6)(2K6)4K = (3K-6) + (2K-6) + 2\sqrt{(3K-6)(2K-6)} 4K=5K12+26K218K12K+364K = 5K - 12 + 2\sqrt{6K^2 - 18K - 12K + 36} 4K=5K12+26K230K+364K = 5K - 12 + 2\sqrt{6K^2 - 30K + 36} Rearrange the terms to isolate the square root: 12K=26K230K+3612 - K = 2\sqrt{6K^2 - 30K + 36}

For the left side to be non-negative, 12K0K1212-K \ge 0 \Rightarrow K \le 12. Square both sides again: (12K)2=4(6K230K+36)(12-K)^2 = 4(6K^2 - 30K + 36) 14424K+K2=24K2120K+144144 - 24K + K^2 = 24K^2 - 120K + 144 0=24K2K2120K+24K+1441440 = 24K^2 - K^2 - 120K + 24K + 144 - 144 0=23K296K0 = 23K^2 - 96K K(23K96)=0K(23K - 96) = 0

Since K>4K > 4, K0K \ne 0. So, 23K96=0K=962323K - 96 = 0 \Rightarrow K = \frac{96}{23}.

Let's check if this value of KK satisfies the conditions K>4K > 4 and K12K \le 12: K=96234.17K = \frac{96}{23} \approx 4.17. 4<4.17124 < 4.17 \le 12. Both conditions are satisfied.

Now, we can compute a,b,ca, b, c: a=K22=96/2322=(9646)/232=50/232=2523=523a = \sqrt{\frac{K-2}{2}} = \sqrt{\frac{96/23 - 2}{2}} = \sqrt{\frac{(96-46)/23}{2}} = \sqrt{\frac{50/23}{2}} = \sqrt{\frac{25}{23}} = \frac{5}{\sqrt{23}} b=K33=96/2333=(9669)/233=27/233=923=323b = \sqrt{\frac{K-3}{3}} = \sqrt{\frac{96/23 - 3}{3}} = \sqrt{\frac{(96-69)/23}{3}} = \sqrt{\frac{27/23}{3}} = \sqrt{\frac{9}{23}} = \frac{3}{\sqrt{23}} c=K44=96/2344=(9692)/234=4/234=123=123c = \sqrt{\frac{K-4}{4}} = \sqrt{\frac{96/23 - 4}{4}} = \sqrt{\frac{(96-92)/23}{4}} = \sqrt{\frac{4/23}{4}} = \sqrt{\frac{1}{23}} = \frac{1}{\sqrt{23}}

Finally, compute a+b+ca+b+c: a+b+c=523+323+123=5+3+123=923a+b+c = \frac{5}{\sqrt{23}} + \frac{3}{\sqrt{23}} + \frac{1}{\sqrt{23}} = \frac{5+3+1}{\sqrt{23}} = \frac{9}{\sqrt{23}} Rationalizing the denominator: a+b+c=92323a+b+c = \frac{9\sqrt{23}}{23}.