Question
Question: There exists a unique triple $(a,b,c)$ of positive real numbers that satisfies the equations $2(a^2...
There exists a unique triple (a,b,c) of positive real numbers that satisfies the equations
2(a2+1)=3(b2+1)=4(c2+1) and ab+bc+ca=1.
Compute a+b+c.

23923
Solution
Let the common value of the first equation be K. 2(a2+1)=3(b2+1)=4(c2+1)=K
From this, we can express a2,b2,c2 in terms of K: 2a2+2=K⇒a2=2K−2 3b2+3=K⇒b2=3K−3 4c2+4=K⇒c2=4K−4
Since a,b,c are positive real numbers, we must have a2>0,b2>0,c2>0. This implies: K−2>0⇒K>2 K−3>0⇒K>3 K−4>0⇒K>4 Combining these, we must have K>4.
Now, we can write a,b,c as: a=2K−2 b=3K−3 c=4K−4
To simplify the second equation ab+bc+ca=1, we use a trigonometric substitution. Let a=tanx, b=tany, c=tanz. Since a,b,c>0, we can choose x,y,z∈(0,π/2). Then a2+1=tan2x+1=sec2x=cos2x1. b2+1=sec2y=cos2y1. c2+1=sec2z=cos2z1.
Substitute these into the first equation: cos2x2=cos2y3=cos2z4=K This gives: cos2x=K2 cos2y=K3 cos2z=K4
Since x,y,z∈(0,π/2), cosx,cosy,cosz are positive. cosx=K2 cosy=K3 cosz=K4
Now we find sinx,siny,sinz: sin2x=1−cos2x=1−K2=KK−2⇒sinx=KK−2 sin2y=1−cos2y=1−K3=KK−3⇒siny=KK−3 sin2z=1−cos2z=1−K4=KK−4⇒sinz=KK−4
The second equation is ab+bc+ca=1. In terms of x,y,z: tanxtany+tanytanz+tanztanx=1. This is a known trigonometric identity that holds if x+y+z=2π (since x,y,z∈(0,π/2), their sum must be in (0,3π/2), and 2π is the only possibility for this identity to hold true).
So, we have x+y+z=2π. This implies z=2π−(x+y). Taking cosine on both sides: cosz=cos(2π−(x+y))=sin(x+y) Using the sine addition formula: sin(x+y)=sinxcosy+cosxsiny. So, cosz=sinxcosy+cosxsiny.
Substitute the expressions in terms of K: K4=KK−2K3+K2KK−3 K2=KK3(K−2)+KK2(K−3) Multiply by K: 2K=3(K−2)+2(K−3) Square both sides: (2K)2=(3K−6+2K−6)2 4K=(3K−6)+(2K−6)+2(3K−6)(2K−6) 4K=5K−12+26K2−18K−12K+36 4K=5K−12+26K2−30K+36 Rearrange the terms to isolate the square root: 12−K=26K2−30K+36
For the left side to be non-negative, 12−K≥0⇒K≤12. Square both sides again: (12−K)2=4(6K2−30K+36) 144−24K+K2=24K2−120K+144 0=24K2−K2−120K+24K+144−144 0=23K2−96K K(23K−96)=0
Since K>4, K=0. So, 23K−96=0⇒K=2396.
Let's check if this value of K satisfies the conditions K>4 and K≤12: K=2396≈4.17. 4<4.17≤12. Both conditions are satisfied.
Now, we can compute a,b,c: a=2K−2=296/23−2=2(96−46)/23=250/23=2325=235 b=3K−3=396/23−3=3(96−69)/23=327/23=239=233 c=4K−4=496/23−4=4(96−92)/23=44/23=231=231
Finally, compute a+b+c: a+b+c=235+233+231=235+3+1=239 Rationalizing the denominator: a+b+c=23923.