Solveeit Logo

Question

Question: The integral $\int \frac{sin^2xcos^2x}{(sin^3x + cos^3x)sin^2x + sin^3xcos^2x + cos^3x)} dx$ is...

The integral sin2xcos2x(sin3x+cos3x)sin2x+sin3xcos2x+cos3x)dx\int \frac{sin^2xcos^2x}{(sin^3x + cos^3x)sin^2x + sin^3xcos^2x + cos^3x)} dx is

A

13(1+tan3x)+c\frac{1}{3(1 + tan^3x)} + c, where c is a constant of integration.

B

13(1+tan3x)+c\frac{-1}{3(1 + tan^3x)} + c, where c is a constant of integration.

C

11+cot3x+c\frac{1}{1 + cot^3x} + c, where c is a constant of integration.

D

11+cos3x+c\frac{-1}{1 + cos^3x} + c, where c is a constant of integration.

Answer

13(1+tan3x)+c\frac{-1}{3(1 + tan^3x)} + c, where c is a constant of integration.

Explanation

Solution

Let the given integral be II.

I=sin2xcos2x(sin3x+cos3x)sin2x+sin3xcos2x+cos3x)dxI = \int \frac{\sin^2x\cos^2x}{(\sin^3x + \cos^3x)\sin^2x + \sin^3x\cos^2x + \cos^3x)} dx.

It appears that there is a typo in the denominator, and it was intended to be (sin3x+cos3x)2(\sin^3x + \cos^3x)^2. Assuming this corrected denominator, the solution proceeds as above.

Let the integral be I=sin2xcos2x(sin3x+cos3x)2dxI = \int \frac{\sin^2x\cos^2x}{(\sin^3x + \cos^3x)^2} dx.

Divide the numerator and the denominator by cos6x\cos^6x:

I=sin2xcos2xcos6x(sin3x+cos3x)2cos6xdx=sin2xcos4x(sin3xcos3x+cos3xcos3x)2dxI = \int \frac{\frac{\sin^2x\cos^2x}{\cos^6x}}{\frac{(\sin^3x + \cos^3x)^2}{\cos^6x}} dx = \int \frac{\frac{\sin^2x}{\cos^4x}}{(\frac{\sin^3x}{\cos^3x} + \frac{\cos^3x}{\cos^3x})^2} dx

I=tan2xsec2x(tan3x+1)2dxI = \int \frac{\tan^2x \sec^2x}{(\tan^3x + 1)^2} dx.

Let u=1+tan3xu = 1 + \tan^3x.

Differentiating uu with respect to xx:

dudx=ddx(1+tan3x)=0+3tan2xddx(tanx)=3tan2xsec2x\frac{du}{dx} = \frac{d}{dx}(1 + \tan^3x) = 0 + 3\tan^2x \frac{d}{dx}(\tan x) = 3\tan^2x \sec^2x.

So, du=3tan2xsec2xdxdu = 3\tan^2x \sec^2x dx.

The integral becomes:

I=1(tan3x+1)2(tan2xsec2xdx)I = \int \frac{1}{(\tan^3x + 1)^2} (\tan^2x \sec^2x dx)

I=1u2du3=13u2duI = \int \frac{1}{u^2} \frac{du}{3} = \frac{1}{3} \int u^{-2} du.

Integrating u2u^{-2} with respect to uu:

u2du=u2+12+1+c=u11+c=1u+c\int u^{-2} du = \frac{u^{-2+1}}{-2+1} + c = \frac{u^{-1}}{-1} + c = -\frac{1}{u} + c.

Substitute back u=1+tan3xu = 1 + \tan^3x:

I=13(11+tan3x)+c=13(1+tan3x)+cI = \frac{1}{3} \left(-\frac{1}{1 + \tan^3x}\right) + c = -\frac{1}{3(1 + \tan^3x)} + c.