Question
Question: The integral $\int \frac{sin^2xcos^2x}{(sin^3x + cos^3x)sin^2x + sin^3xcos^2x + cos^3x)} dx$ is...
The integral ∫(sin3x+cos3x)sin2x+sin3xcos2x+cos3x)sin2xcos2xdx is

3(1+tan3x)1+c, where c is a constant of integration.
3(1+tan3x)−1+c, where c is a constant of integration.
1+cot3x1+c, where c is a constant of integration.
1+cos3x−1+c, where c is a constant of integration.
3(1+tan3x)−1+c, where c is a constant of integration.
Solution
Let the given integral be I.
I=∫(sin3x+cos3x)sin2x+sin3xcos2x+cos3x)sin2xcos2xdx.
It appears that there is a typo in the denominator, and it was intended to be (sin3x+cos3x)2. Assuming this corrected denominator, the solution proceeds as above.
Let the integral be I=∫(sin3x+cos3x)2sin2xcos2xdx.
Divide the numerator and the denominator by cos6x:
I=∫cos6x(sin3x+cos3x)2cos6xsin2xcos2xdx=∫(cos3xsin3x+cos3xcos3x)2cos4xsin2xdx
I=∫(tan3x+1)2tan2xsec2xdx.
Let u=1+tan3x.
Differentiating u with respect to x:
dxdu=dxd(1+tan3x)=0+3tan2xdxd(tanx)=3tan2xsec2x.
So, du=3tan2xsec2xdx.
The integral becomes:
I=∫(tan3x+1)21(tan2xsec2xdx)
I=∫u213du=31∫u−2du.
Integrating u−2 with respect to u:
∫u−2du=−2+1u−2+1+c=−1u−1+c=−u1+c.
Substitute back u=1+tan3x:
I=31(−1+tan3x1)+c=−3(1+tan3x)1+c.