Solveeit Logo

Question

Question: Suppose $f(n)=log_2(3).log_3(4).log_4(5)....log_{n-1}(n)$ then the sum $\sum_{k=2}^{100} f(2^k)$ equ...

Suppose f(n)=log2(3).log3(4).log4(5)....logn1(n)f(n)=log_2(3).log_3(4).log_4(5)....log_{n-1}(n) then the sum k=2100f(2k)\sum_{k=2}^{100} f(2^k) equals

A

5010

B

5050

C

5100

D

5049

Answer

5049

Explanation

Solution

The function f(n)f(n) can be simplified using the change of base formula for logarithms: f(n)=log2(3)log3(4)log4(5)logn1(n)f(n) = \log_2(3) \cdot \log_3(4) \cdot \log_4(5) \cdots \log_{n-1}(n) Using loga(b)=ln(b)ln(a)\log_a(b) = \frac{\ln(b)}{\ln(a)}, we get: f(n)=ln(3)ln(2)ln(4)ln(3)ln(5)ln(4)ln(n)ln(n1)f(n) = \frac{\ln(3)}{\ln(2)} \cdot \frac{\ln(4)}{\ln(3)} \cdot \frac{\ln(5)}{\ln(4)} \cdots \frac{\ln(n)}{\ln(n-1)} This is a telescoping product, which simplifies to: f(n)=ln(n)ln(2)=log2(n)f(n) = \frac{\ln(n)}{\ln(2)} = \log_2(n)

Now we need to compute the sum k=2100f(2k)\sum_{k=2}^{100} f(2^k): k=2100f(2k)=k=2100log2(2k)\sum_{k=2}^{100} f(2^k) = \sum_{k=2}^{100} \log_2(2^k) Using the property loga(ax)=x\log_a(a^x) = x: k=2100log2(2k)=k=2100k\sum_{k=2}^{100} \log_2(2^k) = \sum_{k=2}^{100} k

This is the sum of an arithmetic series 2+3++1002 + 3 + \cdots + 100. The sum can be calculated as: k=2100k=(k=1100k)1\sum_{k=2}^{100} k = \left(\sum_{k=1}^{100} k\right) - 1 The sum of the first 100 integers is 100(100+1)2=100×1012=5050\frac{100(100+1)}{2} = \frac{100 \times 101}{2} = 5050. Therefore, the required sum is 50501=50495050 - 1 = 5049.