Solveeit Logo

Question

Question: $\lim_{x \to \pi/2} \frac{sin (\pi \csc^2 x)}{(\pi-2x)^2}$...

limxπ/2sin(πcsc2x)(π2x)2\lim_{x \to \pi/2} \frac{sin (\pi \csc^2 x)}{(\pi-2x)^2}

Answer

π4-\frac{\pi}{4}

Explanation

Solution

To evaluate the limit limxπ/2sin(πcsc2x)(π2x)2\lim_{x \to \pi/2} \frac{\sin (\pi \csc^2 x)}{(\pi-2x)^2}:

1. Identify Indeterminate Form:

As xπ/2x \to \pi/2:

Numerator: sin(πcsc2x)sin(π12)=sin(π)=0\sin (\pi \csc^2 x) \to \sin (\pi \cdot 1^2) = \sin(\pi) = 0.

Denominator: (π2x)2(π2(π/2))2=(ππ)2=02=0(\pi-2x)^2 \to (\pi - 2(\pi/2))^2 = (\pi-\pi)^2 = 0^2 = 0.

The limit is of the indeterminate form 0/00/0.

2. Transform the Numerator using Trigonometric Identities:

We use the identity sinA=sin(πA)\sin A = \sin(\pi - A).

So, sin(πcsc2x)=sin(ππcsc2x)\sin(\pi \csc^2 x) = \sin(\pi - \pi \csc^2 x).

Factor out π\pi from the argument: π(1csc2x)\pi(1 - \csc^2 x).

Recall the identity 1+cot2x=csc2x1 + \cot^2 x = \csc^2 x, which implies 1csc2x=cot2x1 - \csc^2 x = -\cot^2 x.

Substitute this into the argument: π(cot2x)=πcot2x\pi(-\cot^2 x) = -\pi \cot^2 x.

Therefore, the numerator becomes sin(πcot2x)\sin(-\pi \cot^2 x).

Since sin(A)=sinA\sin(-A) = -\sin A, we have sin(πcot2x)=sin(πcot2x)\sin(-\pi \cot^2 x) = -\sin(\pi \cot^2 x).

The limit expression now is:

limxπ/2sin(πcot2x)(π2x)2\lim_{x \to \pi/2} \frac{-\sin(\pi \cot^2 x)}{(\pi-2x)^2}

3. Apply Standard Limit limy0sinyy=1\lim_{y \to 0} \frac{\sin y}{y} = 1:

As xπ/2x \to \pi/2, cotxcot(π/2)=0\cot x \to \cot(\pi/2) = 0. So, πcot2x0\pi \cot^2 x \to 0.

Let y=πcot2xy = \pi \cot^2 x. We can multiply and divide by yy to use the standard limit:

limxπ/2(sin(πcot2x)πcot2xπcot2x(π2x)2)\lim_{x \to \pi/2} \left( -\frac{\sin(\pi \cot^2 x)}{\pi \cot^2 x} \cdot \frac{\pi \cot^2 x}{(\pi-2x)^2} \right)

The first part, limxπ/2sin(πcot2x)πcot2x\lim_{x \to \pi/2} \frac{-\sin(\pi \cot^2 x)}{\pi \cot^2 x}, evaluates to 1-1 as y0y \to 0.

So, the limit simplifies to:

1limxπ/2πcot2x(π2x)2-1 \cdot \lim_{x \to \pi/2} \frac{\pi \cot^2 x}{(\pi-2x)^2}

4. Simplify and Use Substitution:

Rewrite cot2x\cot^2 x as cos2xsin2x\frac{\cos^2 x}{\sin^2 x}:

πlimxπ/2cos2x(π2x)2sin2x-\pi \lim_{x \to \pi/2} \frac{\cos^2 x}{(\pi-2x)^2 \sin^2 x}

As xπ/2x \to \pi/2, sin2xsin2(π/2)=12=1\sin^2 x \to \sin^2(\pi/2) = 1^2 = 1.

So, the expression becomes:

πlimxπ/2cos2x(π2x)2-\pi \lim_{x \to \pi/2} \frac{\cos^2 x}{(\pi-2x)^2}

Let x=π/2hx = \pi/2 - h. As xπ/2x \to \pi/2, h0h \to 0.

Substitute x=π/2hx = \pi/2 - h:

  • cosx=cos(π/2h)=sinh\cos x = \cos(\pi/2 - h) = \sin h
  • π2x=π2(π/2h)=ππ+2h=2h\pi - 2x = \pi - 2(\pi/2 - h) = \pi - \pi + 2h = 2h

Substitute these into the limit expression:

πlimh0(sinh)2(2h)2-\pi \lim_{h \to 0} \frac{(\sin h)^2}{(2h)^2}

πlimh0sin2h4h2-\pi \lim_{h \to 0} \frac{\sin^2 h}{4h^2}

πlimh014(sinhh)2-\pi \lim_{h \to 0} \frac{1}{4} \left( \frac{\sin h}{h} \right)^2

Using the standard limit limh0sinhh=1\lim_{h \to 0} \frac{\sin h}{h} = 1:

π14(1)2=π4-\pi \cdot \frac{1}{4} (1)^2 = -\frac{\pi}{4}

The final answer is π4-\frac{\pi}{4}.

Explanation of the solution:

The limit is of the form 0/00/0. Transform the numerator sin(πcsc2x)\sin(\pi \csc^2 x) to sin(πcot2x)-\sin(\pi \cot^2 x) using sinA=sin(πA)\sin A = \sin(\pi-A) and 1csc2x=cot2x1-\csc^2 x = -\cot^2 x. Apply the standard limit limy0sinyy=1\lim_{y \to 0} \frac{\sin y}{y}=1. The problem reduces to evaluating limxπ/2πcot2x(π2x)2\lim_{x \to \pi/2} \frac{-\pi \cot^2 x}{(\pi-2x)^2}. Convert cot2x\cot^2 x to cos2xsin2x\frac{\cos^2 x}{\sin^2 x}. Substitute x=π/2hx = \pi/2 - h and simplify using cos(π/2h)=sinh\cos(\pi/2 - h) = \sin h and π2x=2h\pi-2x = 2h. The limit becomes πlimh0sin2h4h2-\pi \lim_{h \to 0} \frac{\sin^2 h}{4h^2}, which evaluates to π/4-\pi/4.