Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{x-sinx}{x^3}$...

limx0xsinxx3\lim_{x \to 0} \frac{x-sinx}{x^3}

Answer

1/6

Explanation

Solution

We are asked to evaluate the limit limx0xsinxx3\lim_{x \to 0} \frac{x-\sin x}{x^3}.

As x0x \to 0, the numerator xsinx0sin0=0x - \sin x \to 0 - \sin 0 = 0.
As x0x \to 0, the denominator x303=0x^3 \to 0^3 = 0.
The limit is of the indeterminate form 00\frac{0}{0}. We can use either L'Hôpital's Rule or Taylor series expansion.

Method 1: Using L'Hôpital's Rule

Applying L'Hôpital's Rule:

limx0xsinxx3=limx0ddx(xsinx)ddx(x3)=limx01cosx3x2\lim_{x \to 0} \frac{x-\sin x}{x^3} = \lim_{x \to 0} \frac{\frac{d}{dx}(x-\sin x)}{\frac{d}{dx}(x^3)} = \lim_{x \to 0} \frac{1-\cos x}{3x^2}

This is still of the form 00\frac{0}{0}. Applying L'Hôpital's Rule again:

=limx0ddx(1cosx)ddx(3x2)=limx0(sinx)6x=limx0sinx6x= \lim_{x \to 0} \frac{\frac{d}{dx}(1-\cos x)}{\frac{d}{dx}(3x^2)} = \lim_{x \to 0} \frac{-(-\sin x)}{6x} = \lim_{x \to 0} \frac{\sin x}{6x}

This is still of the form 00\frac{0}{0}. Applying L'Hôpital's Rule a third time:

=limx0ddx(sinx)ddx(6x)=limx0cosx6= \lim_{x \to 0} \frac{\frac{d}{dx}(\sin x)}{\frac{d}{dx}(6x)} = \lim_{x \to 0} \frac{\cos x}{6}

Now, substitute x=0x=0:

=cos06=16= \frac{\cos 0}{6} = \frac{1}{6}

Method 2: Using Taylor Series Expansion

The Taylor series expansion of sinx\sin x around x=0x=0 (Maclaurin series) is:

sinx=xx33!+x55!x77!+\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots

Substitute this into the expression:

xsinxx3=x(xx33!+x55!)x3\frac{x-\sin x}{x^3} = \frac{x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right)}{x^3} =xx+x33!x55!+x3= \frac{x - x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots}{x^3} =x36x5120+x3= \frac{\frac{x^3}{6} - \frac{x^5}{120} + \dots}{x^3}

For x0x \neq 0, we can divide the numerator by x3x^3:

=16x2120+x45040= \frac{1}{6} - \frac{x^2}{120} + \frac{x^4}{5040} - \dots

Now, take the limit as x0x \to 0:

limx0(16x2120+x45040)=160+0=16\lim_{x \to 0} \left(\frac{1}{6} - \frac{x^2}{120} + \frac{x^4}{5040} - \dots \right) = \frac{1}{6} - 0 + 0 - \dots = \frac{1}{6}

Both methods give the same result.