Solveeit Logo

Question

Question: Let the circle $(x - 1)^2 + (y - 2)^2 = 25$ cuts rectangular hyperbola with transverse axis along y ...

Let the circle (x1)2+(y2)2=25(x - 1)^2 + (y - 2)^2 = 25 cuts rectangular hyperbola with transverse axis along y = x at 4 points A, B, C and D having coordinates (xi,yi)(x_i, y_i), i=1,2,3,4i = 1, 2, 3, 4 such that origin is centre of hyperbola. If =x1+x2+x3+x4\ell = x_1 + x_2 + x_3 + x_4, m=x12+x22+x32+x42m = x_1^2 + x_2^2 + x_3^2 + x_4^2, n=y12+y22+y32+y42n = y_1^2 + y_2^2 + y_3^2 + y_4^2 then m+n=\frac{m+n}{\ell} =

A

100

B

10

C

50

D

20

Answer

50

Explanation

Solution

The circle is

(x1)2+(y2)2=25,(x-1)^2+(y-2)^2=25,

and the rectangular hyperbola with center at the origin and transverse axis along y=xy=x can be written (after rotation) as

xy=d,xy=d,

where dd is a constant.

For any intersection point (xi,yi)(x_i, y_i) we have

yi=dxi.y_i=\frac{d}{x_i}.

Substitute y=d/xy=d/x into the circle:

(x1)2+(dx2)2=25.(x-1)^2+\Big(\frac{d}{x}-2\Big)^2=25.

Multiplying by x2x^2 yields the quartic in xx:

x42x320x24dx+d2=0.x^4-2x^3-20x^2-4dx+d^2=0.

Let the roots be x1,x2,x3,x4x_1,x_2,x_3,x_4. By Vieta’s formulas:

  • Sum of the roots: =x1+x2+x3+x4=2.\ell=x_1+x_2+x_3+x_4=2.
  • Sum of the product of the roots taken two at a time is S2=20S_2=-20.

Then the sum of squares of the xx-coordinates is

m=xi2=(xi)22S2=222(20)=4+40=44.m=\sum x_i^2=(\sum x_i)^2-2S_2=2^2-2(-20)=4+40=44.

For the corresponding yy-coordinates, because yi=dxiy_i=\frac{d}{x_i},

n=yi2=d21xi2.n=\sum y_i^2=d^2\sum \frac{1}{x_i^2}.

To compute 1/xi2\sum 1/x_i^2, first find 1/xi\sum 1/x_i from Vieta:

1xi=x2x3x4+x1x2x3x4=S3d2=4dd2=4d,\sum \frac{1}{x_i}=\frac{x_2x_3x_4+\cdots}{x_1x_2x_3x_4}=\frac{S_3}{d^2}=\frac{4d}{d^2}=\frac{4}{d},

where S3=4dS_3=4d (using sign changes from the quartic).

Now, using the identity

1xi2=(1xi)22i<j1xixj,\sum \frac{1}{x_i^2}=\left(\sum \frac{1}{x_i}\right)^2-2\sum_{i<j} \frac{1}{x_ix_j},

one can show (by writing the reciprocal polynomial and applying Vieta) that

1xi2=56d2.\sum \frac{1}{x_i^2}=\frac{56}{d^2}.

Thus,

n=d256d2=56.n=d^2\cdot\frac{56}{d^2}=56.

Therefore,

m+n=44+56=100,andm+n=1002=50.m+n=44+56=100,\quad\text{and}\quad\frac{m+n}{\ell}=\frac{100}{2}=50.