Solveeit Logo

Question

Question: Let \(f\) be a function given by \[ f(x) = \begin{cases} \dfrac{1}{\dfrac{1}{x\ln2}-2^{x}-1}, & x \...

Let ff be a function given by

f(x)={11xln22x1,x0,12,x=0.f(x) = \begin{cases} \dfrac{1}{\dfrac{1}{x\ln2}-2^{x}-1}, & x \neq 0,\\[6pt] \dfrac{1}{2}, & x = 0. \end{cases}

Then:

A

ff is continuous on R\mathbb{R}

B

ff is differentiable on R\mathbb{R} and f(0)f'(0) equals (ln2)24\displaystyle -\tfrac{(\ln2)^2}{4}

C

ff is not differentiable at x=0x = 0

D

ff is differentiable on R\mathbb{R} and f(0)f'(0) equals (ln2)24\displaystyle \tfrac{(\ln2)^2}{4}

Answer

ff is not differentiable at x=0x = 0

Explanation

Solution

Limit as x0x\to0
Denominator:

1xln22x1=1xln2(1+xln2+(xln2)22+)11xln22xln2.\frac1{x\ln2}-2^x-1 =\frac1{x\ln2}-\bigl(1+x\ln2+\tfrac{(x\ln2)^2}{2}+\cdots\bigr)-1 \approx \frac1{x\ln2}-2 -x\ln2 -\cdots.

Hence

f(x)=11xln22x1xln21(2+xln2+)xln20(as x0).f(x) =\frac{1}{\frac1{x\ln2}-2^x-1} \sim \frac{x\ln2}{\,1 - (2+x\ln2+\cdots)\,x\ln2\,} \to 0\quad(\text{as }x\to0).

But f(0)=12f(0)=\tfrac12.

Conclusion:
limx0f(x)=0f(0)\lim_{x\to0}f(x)=0\neq f(0), so ff is discontinuous at 0.
• Hence ff cannot be differentiable at x=0x=0.