Solveeit Logo

Question

Question: Let $b \neq 0$ and for $j=0,1,2,....,n$, let $S_j$ be the area of the region bounded by the y-axis a...

Let b0b \neq 0 and for j=0,1,2,....,nj=0,1,2,....,n, let SjS_j be the area of the region bounded by the y-axis and the curve xeay=sinby,jπby(j+1)πbxe^{ay}=sin\,by,\frac{j\pi}{b} \leq y \leq \frac{(j+1)\pi}{b}. Show that S0,S1,S2,...,SnS_0, S_1, S_2, ..., S_n are in geometric progression. Also, find their sum for a=1a=-1 and b=πb = \pi.

Answer

The sum of the geometric progression is π(e+1)1+π2en+11e1\frac{\pi(e+1)}{1+\pi^2} \frac{e^{n+1}-1}{e-1}.

Explanation

Solution

The area SjS_j of the region bounded by the y-axis (x=0x=0) and the curve xeay=sin(by)xe^{ay}=\sin(by) for jπby(j+1)πb\frac{j\pi}{b} \leq y \leq \frac{(j+1)\pi}{b} is given by the integral: Sj=jπb(j+1)πbxdyS_j = \int_{\frac{j\pi}{b}}^{\frac{(j+1)\pi}{b}} |x| dy.

From the given curve equation, x=eaysin(by)x = e^{-ay} \sin(by).

Since eaye^{-ay} is always positive, we need to consider the sign of sin(by)\sin(by).

For y[jπb,(j+1)πb]y \in \left[\frac{j\pi}{b}, \frac{(j+1)\pi}{b}\right], the term byby lies in the interval [jπ,(j+1)π][j\pi, (j+1)\pi]. In this interval, sin(by)\sin(by) has a constant sign.

Therefore, Sj=jπb(j+1)πbeaysin(by)dyS_j = \left| \int_{\frac{j\pi}{b}}^{\frac{(j+1)\pi}{b}} e^{-ay} \sin(by) dy \right|.

To evaluate the integral, we use the standard formula eAxsin(Bx)dx=eAxA2+B2(Asin(Bx)Bcos(Bx))\int e^{Ax} \sin(Bx) dx = \frac{e^{Ax}}{A^2+B^2} (A \sin(Bx) - B \cos(Bx)).

Here, A=aA = -a and B=bB = b.

So, eaysin(by)dy=eay(a)2+b2(asin(by)bcos(by))\int e^{-ay} \sin(by) dy = \frac{e^{-ay}}{(-a)^2+b^2} (-a \sin(by) - b \cos(by)).

Let F(y)=eaya2+b2(asin(by)bcos(by))F(y) = \frac{e^{-ay}}{a^2+b^2} (-a \sin(by) - b \cos(by)).

The definite integral Ij=jπb(j+1)πbeaysin(by)dy=F((j+1)πb)F(jπb)I_j = \int_{\frac{j\pi}{b}}^{\frac{(j+1)\pi}{b}} e^{-ay} \sin(by) dy = F\left(\frac{(j+1)\pi}{b}\right) - F\left(\frac{j\pi}{b}\right).

At the upper limit y=(j+1)πby = \frac{(j+1)\pi}{b}:

by=(j+1)π    sin(by)=0by = (j+1)\pi \implies \sin(by) = 0 and cos(by)=(1)j+1\cos(by) = (-1)^{j+1}.

F((j+1)πb)=ea(j+1)πba2+b2(b(1)j+1)=b(1)jea(j+1)πba2+b2F\left(\frac{(j+1)\pi}{b}\right) = \frac{e^{-a\frac{(j+1)\pi}{b}}}{a^2+b^2} (-b (-1)^{j+1}) = \frac{b(-1)^j e^{-a\frac{(j+1)\pi}{b}}}{a^2+b^2}.

At the lower limit y=jπby = \frac{j\pi}{b}:

by=jπ    sin(by)=0by = j\pi \implies \sin(by) = 0 and cos(by)=(1)j\cos(by) = (-1)^j.

F(jπb)=eajπba2+b2(b(1)j)F\left(\frac{j\pi}{b}\right) = \frac{e^{-a\frac{j\pi}{b}}}{a^2+b^2} (-b (-1)^j).

Now, substitute these into IjI_j:

Ij=b(1)jea(j+1)πba2+b2(b(1)jeajπba2+b2)I_j = \frac{b(-1)^j e^{-a\frac{(j+1)\pi}{b}}}{a^2+b^2} - \left( \frac{-b(-1)^j e^{-a\frac{j\pi}{b}}}{a^2+b^2} \right)

Ij=b(1)ja2+b2(ea(j+1)πb+eajπb)I_j = \frac{b(-1)^j}{a^2+b^2} \left( e^{-a\frac{(j+1)\pi}{b}} + e^{-a\frac{j\pi}{b}} \right)

Ij=b(1)ja2+b2eajπb(eaπb+1)I_j = \frac{b(-1)^j}{a^2+b^2} e^{-a\frac{j\pi}{b}} \left( e^{-a\frac{\pi}{b}} + 1 \right).

The area Sj=IjS_j = |I_j|. Since b0b \neq 0, a2+b2>0a^2+b^2 > 0, eajπb>0e^{-a\frac{j\pi}{b}} > 0, and eaπb+1>0e^{-a\frac{\pi}{b}} + 1 > 0, we have:

Sj=ba2+b2eajπb(eaπb+1)S_j = \frac{|b|}{a^2+b^2} e^{-a\frac{j\pi}{b}} \left( e^{-a\frac{\pi}{b}} + 1 \right).

To show that S0,S1,...,SnS_0, S_1, ..., S_n are in geometric progression, we find the ratio Sj+1Sj\frac{S_{j+1}}{S_j}:

Sj+1Sj=ba2+b2ea(j+1)πb(eaπb+1)ba2+b2eajπb(eaπb+1)\frac{S_{j+1}}{S_j} = \frac{\frac{|b|}{a^2+b^2} e^{-a\frac{(j+1)\pi}{b}} \left( e^{-a\frac{\pi}{b}} + 1 \right)}{\frac{|b|}{a^2+b^2} e^{-a\frac{j\pi}{b}} \left( e^{-a\frac{\pi}{b}} + 1 \right)}

Sj+1Sj=ea(j+1)πbeajπb=eaπb\frac{S_{j+1}}{S_j} = \frac{e^{-a\frac{(j+1)\pi}{b}}}{e^{-a\frac{j\pi}{b}}} = e^{-a\frac{\pi}{b}}.

Since the ratio is constant and independent of jj, the sequence S0,S1,...,SnS_0, S_1, ..., S_n is a geometric progression with common ratio r=eaπbr = e^{-a\frac{\pi}{b}}.

Now, we find the sum for a=1a=-1 and b=πb=\pi.

The common ratio r=e(1)ππ=e1=er = e^{-(-1)\frac{\pi}{\pi}} = e^1 = e.

The first term S0S_0 (for j=0j=0) is:

S0=π(1)2+π2e(1)0ππ(e(1)ππ+1)S_0 = \frac{|\pi|}{(-1)^2+\pi^2} e^{-(-1)\frac{0\pi}{\pi}} \left( e^{-(-1)\frac{\pi}{\pi}} + 1 \right)

S0=π1+π2(1)(e+1)=π(e+1)1+π2S_0 = \frac{\pi}{1+\pi^2} (1) (e+1) = \frac{\pi(e+1)}{1+\pi^2}.

The sum of a geometric progression with n+1n+1 terms (from j=0j=0 to j=nj=n) is given by the formula:

Sum =S0rn+11r1= S_0 \frac{r^{n+1}-1}{r-1}.

Substituting the values of S0S_0 and rr:

Sum =π(e+1)1+π2en+11e1= \frac{\pi(e+1)}{1+\pi^2} \frac{e^{n+1}-1}{e-1}.