Solveeit Logo

Question

Question: $\int \frac{5(x^6+1)}{x^2+1}dx =$ (where C is a constant of integration.)...

5(x6+1)x2+1dx=\int \frac{5(x^6+1)}{x^2+1}dx =

(where C is a constant of integration.)

A

5x77+5x+5tan1x+C\frac{5x^7}{7} + 5x + 5\tan^{-1}x + C

B

5tan1x+log(x2+1)+C5\tan^{-1}x + \log(x^2+1) + C

C

5(x7+1)+log(x2+1)+C5(x^7+1) + \log(x^2+1) + C

D

x55x33+5x+Cx^5 - \frac{5x^3}{3} + 5x + C

Answer

x55x33+5x+Cx^5 - \frac{5x^3}{3} + 5x + C

Explanation

Solution

To solve the integral 5(x6+1)x2+1dx\int \frac{5(x^6+1)}{x^2+1}dx, we first simplify the integrand x6+1x2+1\frac{x^6+1}{x^2+1}.

We can use algebraic factorization for the numerator x6+1x^6+1. This is a sum of cubes, where x6=(x2)3x^6 = (x^2)^3 and 1=131 = 1^3. Using the formula a3+b3=(a+b)(a2ab+b2)a^3+b^3 = (a+b)(a^2-ab+b^2), we let a=x2a=x^2 and b=1b=1: x6+1=(x2)3+13=(x2+1)((x2)2x21+12)=(x2+1)(x4x2+1)x^6+1 = (x^2)^3 + 1^3 = (x^2+1)((x^2)^2 - x^2 \cdot 1 + 1^2) = (x^2+1)(x^4-x^2+1).

Now substitute this back into the integrand: x6+1x2+1=(x2+1)(x4x2+1)x2+1\frac{x^6+1}{x^2+1} = \frac{(x^2+1)(x^4-x^2+1)}{x^2+1}. Since x2+1x^2+1 is never zero for real xx, we can cancel the term (x2+1)(x^2+1): x6+1x2+1=x4x2+1\frac{x^6+1}{x^2+1} = x^4-x^2+1.

The integral becomes: 5(x6+1)x2+1dx=5(x4x2+1)dx\int \frac{5(x^6+1)}{x^2+1}dx = \int 5(x^4-x^2+1)dx. We can take the constant factor 5 out of the integral: =5(x4x2+1)dx= 5 \int (x^4-x^2+1)dx

Now, integrate each term using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (for n1n \neq -1), and the integral of a constant, cdx=cx+C\int c dx = cx + C:

x4dx=x4+14+1=x55\int x^4 dx = \frac{x^{4+1}}{4+1} = \frac{x^5}{5}

x2dx=x2dx=x2+12+1=x33\int -x^2 dx = -\int x^2 dx = -\frac{x^{2+1}}{2+1} = -\frac{x^3}{3}

1dx=x\int 1 dx = x

So, the integral is: 5(x55x33+x)+C=5x555x33+5x+C=x55x33+5x+C5 \left( \frac{x^5}{5} - \frac{x^3}{3} + x \right) + C = 5 \cdot \frac{x^5}{5} - 5 \cdot \frac{x^3}{3} + 5 \cdot x + C = x^5 - \frac{5x^3}{3} + 5x + C