Solveeit Logo

Question

Question: If y = 2x + k touches $(x - 1)^2 + (y + 2)^2 = 1$, then find k and point of contact (given k > -2)....

If y = 2x + k touches (x1)2+(y+2)2=1(x - 1)^2 + (y + 2)^2 = 1, then find k and point of contact (given k > -2).

A

k = 54\sqrt{5} - 4, Point of contact: (1255,2+55)\left(1 - \frac{2\sqrt{5}}{5}, -2 + \frac{\sqrt{5}}{5}\right)

B

k = 54-\sqrt{5} - 4, Point of contact: (1+255,255)\left(1 + \frac{2\sqrt{5}}{5}, -2 - \frac{\sqrt{5}}{5}\right)

C

k = 5+4\sqrt{5} + 4, Point of contact: (1+255,2+55)\left(1 + \frac{2\sqrt{5}}{5}, -2 + \frac{\sqrt{5}}{5}\right)

D

k = 5+4-\sqrt{5} + 4, Point of contact: (1255,255)\left(1 - \frac{2\sqrt{5}}{5}, -2 - \frac{\sqrt{5}}{5}\right)

Answer

k = 54\sqrt{5} - 4, Point of contact: (1255,2+55)\left(1 - \frac{2\sqrt{5}}{5}, -2 + \frac{\sqrt{5}}{5}\right)

Explanation

Solution

The circle (x1)2+(y+2)2=1(x - 1)^2 + (y + 2)^2 = 1 has its center at C(1,2)C(1, -2) and radius r=1r=1. The line y=2x+ky = 2x + k can be written as 2xy+k=02x - y + k = 0. For the line to be tangent to the circle, the perpendicular distance from the center to the line must be equal to the radius. d=2(1)(2)+k22+(1)2=4+k5d = \frac{|2(1) - (-2) + k|}{\sqrt{2^2 + (-1)^2}} = \frac{|4+k|}{\sqrt{5}} Setting d=r=1d=r=1: 4+k5=1    4+k=5\frac{|4+k|}{\sqrt{5}} = 1 \implies |4+k| = \sqrt{5} This gives two possibilities:

  1. 4+k=5    k=544+k = \sqrt{5} \implies k = \sqrt{5}-4
  2. 4+k=5    k=544+k = -\sqrt{5} \implies k = -\sqrt{5}-4

Given the condition k>2k > -2: Since 52.236\sqrt{5} \approx 2.236, k1=542.2364=1.764k_1 = \sqrt{5}-4 \approx 2.236 - 4 = -1.764, which is greater than 2-2. k2=542.2364=6.236k_2 = -\sqrt{5}-4 \approx -2.236 - 4 = -6.236, which is less than 2-2. Thus, we choose k=54k = \sqrt{5}-4.

The point of contact (x0,y0)(x_0, y_0) is the foot of the perpendicular from the center C(1,2)C(1, -2) to the tangent line 2xy+(54)=02x - y + (\sqrt{5}-4) = 0. Using the formula for the foot of the perpendicular: x0x1A=y0y1B=Ax1+By1+CA2+B2\frac{x_0 - x_1}{A} = \frac{y_0 - y_1}{B} = -\frac{Ax_1 + By_1 + C}{A^2 + B^2} x012=y0(2)1=2(1)1(2)+(54)22+(1)2\frac{x_0 - 1}{2} = \frac{y_0 - (-2)}{-1} = -\frac{2(1) - 1(-2) + (\sqrt{5}-4)}{2^2 + (-1)^2} x012=y0+21=2+2+544+1\frac{x_0 - 1}{2} = \frac{y_0 + 2}{-1} = -\frac{2 + 2 + \sqrt{5}-4}{4+1} x012=y0+21=55\frac{x_0 - 1}{2} = \frac{y_0 + 2}{-1} = -\frac{\sqrt{5}}{5} Equating the first part with the result: x012=55    x01=255    x0=1255\frac{x_0 - 1}{2} = -\frac{\sqrt{5}}{5} \implies x_0 - 1 = -\frac{2\sqrt{5}}{5} \implies x_0 = 1 - \frac{2\sqrt{5}}{5} Equating the second part with the result: y0+21=55    y0+2=55    y0=2+55\frac{y_0 + 2}{-1} = -\frac{\sqrt{5}}{5} \implies y_0 + 2 = \frac{\sqrt{5}}{5} \implies y_0 = -2 + \frac{\sqrt{5}}{5} The point of contact is (1255,2+55)\left(1 - \frac{2\sqrt{5}}{5}, -2 + \frac{\sqrt{5}}{5}\right).