Question
Question: If \(p+q = 1\), then \(\sum_{r=0}^{n} r^3 \binom{n}{r} p^r q^{n-r} =\)...
If p+q=1, then ∑r=0nr3(rn)prqn−r=

A
np(n2p+3(n−1)p+1)
B
np((n2−n)p2+2(n−1)p+1)
C
np((n2−3n+2)p2+2(n−1)p+1)
D
np((n2−3n+2)p2+3(n−1)p+1)
Answer
np((n2−3n+2)p2+3(n−1)p+1)
Explanation
Solution
Using the third moment of a binomial distribution
For X∼Binomial(n,p):
Let q=1−p. Then
E[X3]=npq(1−2p)+3n2p2q+n3p3.Expand each term:
npq(1−2p)=np(1−p)(1−2p)=np(1−3p+2p2), 3n2p2q=3n2p2(1−p)=3n2p2−3n2p3, n3p3=n3p3.Summing coefficients of like powers of p:
E[X3]=np+(3n2−3n)p2+(n3−3n2+2n)p3=np[1+3(n−1)p+(n2−3n+2)p2].Hence the required sum is
np((n2−3n+2)p2+3(n−1)p+1).