Question
Question: If L = cos² 84° + cos² 36° + cos 36° cos 84° M = cot 73° cot 47° cot 13° N = 4 sin 156° sin 84° sin3...
If L = cos² 84° + cos² 36° + cos 36° cos 84° M = cot 73° cot 47° cot 13° N = 4 sin 156° sin 84° sin36°, then which of the following option(s) is(are) correct?

0 < LMN
0 < LMN < π
Solution
To solve the problem, we need to evaluate the expressions L, M, and N first, and then check the given option.
1. Evaluating L: L = cos² 84° + cos² 36° + cos 36° cos 84° We use the identity: cos2A+cos2B=1+cos(A+B)cos(A−B). Let A = 84° and B = 36°. So, cos284°+cos236°=1+cos(84°+36°)cos(84°−36°) =1+cos(120°)cos(48°) =1+(−21)cos(48°) =1−21cos(48°).
Now, consider the term cos36°cos84°. Using the product-to-sum identity: 2cosAcosB=cos(A+B)+cos(A−B). cos36°cos84°=21[cos(36°+84°)+cos(36°−84°)] =21[cos(120°)+cos(−48°)] =21[−21+cos(48°)] =−41+21cos(48°).
Substitute these back into the expression for L: L = (1−21cos(48°))+(−41+21cos(48°)) L = 1−41 L = 43.
2. Evaluating M: M = cot 73° cot 47° cot 13° We observe the angles: 13°, 47°=60°−13°, and 73°=60°+13°. This matches the form of the identity: cotAcot(60°−A)cot(60°+A)=cot(3A). Here, A = 13°. So, M = cot(3×13°) M = cot39°.
3. Evaluating N: N = 4 sin 156° sin 84° sin 36° First, use the identity sin(180°−x)=sinx: sin156°=sin(180°−24°)=sin24°. So, N = 4 sin 24° sin 84° sin 36°. We observe the angles: 24°, 36°=60°−24°, and 84°=60°+24°. This matches the form of the identity: sinAsin(60°−A)sin(60°+A)=41sin(3A). Here, A = 24°. So, N = 4×41sin(3×24°) N = sin72°.
4. Checking the option 0 < LMN < π: We have L = 3/4, M = cot 39°, N = sin 72°. LMN = 43cot39°sin72°.
First, let's check if LMN > 0. Since 0<3/4<1, 3/4 is positive. Since 0°<39°<90°, cot39° is positive. Since 0°<72°<90°, sin72° is positive. The product of three positive numbers is positive, so LMN > 0 is true.
Next, let's check if LMN < π. We know that π≈3.14159. We can rewrite LMN as: LMN = 43sin39°cos39°sin72°. We also know that sin72°=cos(90°−72°)=cos18°. So, LMN = 43sin39°cos39°cos18°.
Let's estimate the values: cos18°≈0.951 (since cos18°=410+25) sin39°≈sin45°=21≈0.707 cos39°≈cos45°=21≈0.707 cot39°≈1. More precisely, cot30°=3≈1.732 and cot45°=1. So cot39° is between 1 and 1.732.
Let's use a more precise estimate or bound: Since 39°<45°, cot39°>cot45°=1. Since 72°<90°, sin72°<sin90°=1. Since 72°>60°, sin72°>sin60°=23≈0.866. So, LMN=43cot39°sin72°. We know cot39°<cot30°=3. So, LMN<43×3×1=433≈43×1.732=45.196=1.299. Since 1.299<π≈3.14159, the condition LMN < π holds true.
Therefore, 0<LMN<π is correct.
The final answer is 0<LMN<π.