Solveeit Logo

Question

Question: If L = cos² 84° + cos² 36° + cos 36° cos 84° M = cot 73° cot 47° cot 13° N = 4 sin 156° sin 84° sin3...

If L = cos² 84° + cos² 36° + cos 36° cos 84° M = cot 73° cot 47° cot 13° N = 4 sin 156° sin 84° sin36°, then which of the following option(s) is(are) correct?

A

0 < LMN

Answer

0 < LMN < π

Explanation

Solution

To solve the problem, we need to evaluate the expressions L, M, and N first, and then check the given option.

1. Evaluating L: L = cos² 84° + cos² 36° + cos 36° cos 84° We use the identity: cos2A+cos2B=1+cos(A+B)cos(AB)\cos^2 A + \cos^2 B = 1 + \cos(A+B)\cos(A-B). Let A = 84° and B = 36°. So, cos284°+cos236°=1+cos(84°+36°)cos(84°36°)\cos^2 84° + \cos^2 36° = 1 + \cos(84°+36°)\cos(84°-36°) =1+cos(120°)cos(48°)= 1 + \cos(120°)\cos(48°) =1+(12)cos(48°)= 1 + (-\frac{1}{2})\cos(48°) =112cos(48°)= 1 - \frac{1}{2}\cos(48°).

Now, consider the term cos36°cos84°\cos 36° \cos 84°. Using the product-to-sum identity: 2cosAcosB=cos(A+B)+cos(AB)2 \cos A \cos B = \cos(A+B) + \cos(A-B). cos36°cos84°=12[cos(36°+84°)+cos(36°84°)]\cos 36° \cos 84° = \frac{1}{2}[\cos(36°+84°) + \cos(36°-84°)] =12[cos(120°)+cos(48°)]= \frac{1}{2}[\cos(120°) + \cos(-48°)] =12[12+cos(48°)]= \frac{1}{2}[-\frac{1}{2} + \cos(48°)] =14+12cos(48°)= -\frac{1}{4} + \frac{1}{2}\cos(48°).

Substitute these back into the expression for L: L = (112cos(48°))+(14+12cos(48°))(1 - \frac{1}{2}\cos(48°)) + (-\frac{1}{4} + \frac{1}{2}\cos(48°)) L = 1141 - \frac{1}{4} L = 34\frac{3}{4}.

2. Evaluating M: M = cot 73° cot 47° cot 13° We observe the angles: 13°13°, 47°=60°13°47° = 60° - 13°, and 73°=60°+13°73° = 60° + 13°. This matches the form of the identity: cotAcot(60°A)cot(60°+A)=cot(3A)\cot A \cot(60°-A) \cot(60°+A) = \cot(3A). Here, A = 13°. So, M = cot(3×13°)\cot(3 \times 13°) M = cot39°\cot 39°.

3. Evaluating N: N = 4 sin 156° sin 84° sin 36° First, use the identity sin(180°x)=sinx\sin(180°-x) = \sin x: sin156°=sin(180°24°)=sin24°\sin 156° = \sin(180°-24°) = \sin 24°. So, N = 4 sin 24° sin 84° sin 36°. We observe the angles: 24°24°, 36°=60°24°36° = 60° - 24°, and 84°=60°+24°84° = 60° + 24°. This matches the form of the identity: sinAsin(60°A)sin(60°+A)=14sin(3A)\sin A \sin(60°-A) \sin(60°+A) = \frac{1}{4}\sin(3A). Here, A = 24°. So, N = 4×14sin(3×24°)4 \times \frac{1}{4}\sin(3 \times 24°) N = sin72°\sin 72°.

4. Checking the option 0 < LMN < π\pi: We have L = 3/4, M = cot 39°, N = sin 72°. LMN = 34cot39°sin72°\frac{3}{4} \cot 39° \sin 72°.

First, let's check if LMN > 0. Since 0<3/4<10 < 3/4 < 1, 3/43/4 is positive. Since 0°<39°<90°0° < 39° < 90°, cot39°\cot 39° is positive. Since 0°<72°<90°0° < 72° < 90°, sin72°\sin 72° is positive. The product of three positive numbers is positive, so LMN > 0 is true.

Next, let's check if LMN < π\pi. We know that π3.14159\pi \approx 3.14159. We can rewrite LMN as: LMN = 34cos39°sin39°sin72°\frac{3}{4} \frac{\cos 39°}{\sin 39°} \sin 72°. We also know that sin72°=cos(90°72°)=cos18°\sin 72° = \cos(90°-72°) = \cos 18°. So, LMN = 34cos39°sin39°cos18°\frac{3}{4} \frac{\cos 39°}{\sin 39°} \cos 18°.

Let's estimate the values: cos18°0.951\cos 18° \approx 0.951 (since cos18°=10+254\cos 18° = \frac{\sqrt{10+2\sqrt{5}}}{4}) sin39°sin45°=120.707\sin 39° \approx \sin 45° = \frac{1}{\sqrt{2}} \approx 0.707 cos39°cos45°=120.707\cos 39° \approx \cos 45° = \frac{1}{\sqrt{2}} \approx 0.707 cot39°1\cot 39° \approx 1. More precisely, cot30°=31.732\cot 30° = \sqrt{3} \approx 1.732 and cot45°=1\cot 45° = 1. So cot39°\cot 39° is between 1 and 1.732.

Let's use a more precise estimate or bound: Since 39°<45°39° < 45°, cot39°>cot45°=1\cot 39° > \cot 45° = 1. Since 72°<90°72° < 90°, sin72°<sin90°=1\sin 72° < \sin 90° = 1. Since 72°>60°72° > 60°, sin72°>sin60°=320.866\sin 72° > \sin 60° = \frac{\sqrt{3}}{2} \approx 0.866. So, LMN=34cot39°sin72°LMN = \frac{3}{4} \cot 39° \sin 72°. We know cot39°<cot30°=3\cot 39° < \cot 30° = \sqrt{3}. So, LMN<34×3×1=3343×1.7324=5.1964=1.299LMN < \frac{3}{4} \times \sqrt{3} \times 1 = \frac{3\sqrt{3}}{4} \approx \frac{3 \times 1.732}{4} = \frac{5.196}{4} = 1.299. Since 1.299<π3.141591.299 < \pi \approx 3.14159, the condition LMN < π\pi holds true.

Therefore, 0<LMN<π0 < LMN < \pi is correct.

The final answer is 0<LMN<π\boxed{0 < LMN < \pi}.