Question
Question: If $\alpha$, $\beta \in C$ are the distinct roots, of the equation $x^2 - x + 1 = 0$, then $\alpha^{...
If α, β∈C are the distinct roots, of the equation x2−x+1=0, then α101+β107 is equal to

A
2
B
-1
C
0
D
1
Answer
1
Explanation
Solution
The roots α,β of the equation x2−x+1=0 satisfy α3=−1 and β3=−1. This is because multiplying the equation by (x+1) yields (x+1)(x2−x+1)=x3+1=0.
We need to evaluate α101+β107. For α101: 101=3×33+2. So, α101=(α3)33⋅α2=(−1)33⋅α2=−1⋅α2=−α2.
For β107: 107=3×35+2. So, β107=(β3)35⋅β2=(−1)35⋅β2=−1⋅β2=−β2.
Therefore, α101+β107=−α2−β2=−(α2+β2).
From Vieta's formulas for the equation x2−x+1=0: Sum of roots: α+β=1 Product of roots: αβ=1
We know that α2+β2=(α+β)2−2αβ. Substituting the values: α2+β2=(1)2−2(1)=1−2=−1.
Finally, substituting this back into the expression for α101+β107: α101+β107=−(α2+β2)=−(−1)=1.