Solveeit Logo

Question

Question: Find the sum of the following infinite series: $$1+\frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3}+\frac...

Find the sum of the following infinite series:

1+210+3102+7103+2104+3105+7106+2107+3108+7109+...1+\frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3}+\frac{2}{10^4}+\frac{3}{10^5}+\frac{7}{10^6}+\frac{2}{10^7}+\frac{3}{10^8}+\frac{7}{10^9}+...

Answer

The sum of the infinite series is 412333\frac{412}{333}.

Explanation

Solution

The given infinite series is: S=1+210+3102+7103+2104+3105+7106+2107+3108+7109+...S = 1+\frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3}+\frac{2}{10^4}+\frac{3}{10^5}+\frac{7}{10^6}+\frac{2}{10^7}+\frac{3}{10^8}+\frac{7}{10^9}+...

1. Identify the pattern: Observe the numerators and denominators. The denominators are powers of 10. The numerators, starting from the second term, follow a repeating pattern: 2, 3, 7, 2, 3, 7, ... This means the series can be written as: S=1+(210+3102+7103)+(2104+3105+7106)+(2107+3108+7109)+...S = 1 + \left(\frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3}\right) + \left(\frac{2}{10^4}+\frac{3}{10^5}+\frac{7}{10^6}\right) + \left(\frac{2}{10^7}+\frac{3}{10^8}+\frac{7}{10^9}\right) + ...

2. Define the repeating block: Let PP be the sum of the first repeating block of terms: P=210+3102+7103P = \frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3} To sum these fractions, find a common denominator, which is 103=100010^3 = 1000: P=2×1001000+3×101000+71000=200+30+71000=2371000P = \frac{2 \times 100}{1000}+\frac{3 \times 10}{1000}+\frac{7}{1000} = \frac{200+30+7}{1000} = \frac{237}{1000}

3. Express the series using the repeating block: Notice how subsequent blocks relate to PP: The second block is 2104+3105+7106=1103(210+3102+7103)=1103P\frac{2}{10^4}+\frac{3}{10^5}+\frac{7}{10^6} = \frac{1}{10^3}\left(\frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3}\right) = \frac{1}{10^3}P. The third block is 2107+3108+7109=1106(210+3102+7103)=1106P\frac{2}{10^7}+\frac{3}{10^8}+\frac{7}{10^9} = \frac{1}{10^6}\left(\frac{2}{10}+\frac{3}{10^2}+\frac{7}{10^3}\right) = \frac{1}{10^6}P. So the series can be written as: S=1+P+1103P+1106P+...S = 1 + P + \frac{1}{10^3}P + \frac{1}{10^6}P + ... S=1+P(1+1103+1106+...)S = 1 + P \left(1 + \frac{1}{10^3} + \frac{1}{10^6} + ...\right)

4. Sum the infinite geometric series: The expression in the parenthesis is an infinite geometric series with the first term a=1a=1 and common ratio r=1103r=\frac{1}{10^3}. Since r=11000<1|r| = \frac{1}{1000} < 1, the sum of this infinite geometric series is given by the formula a1r\frac{a}{1-r}: Sum of GP=111103=1100011000=19991000=1000999\text{Sum of GP} = \frac{1}{1 - \frac{1}{10^3}} = \frac{1}{\frac{1000-1}{1000}} = \frac{1}{\frac{999}{1000}} = \frac{1000}{999}

5. Substitute and calculate the total sum: Now substitute the values of PP and the sum of the geometric series back into the expression for SS: S=1+(2371000)×(1000999)S = 1 + \left(\frac{237}{1000}\right) \times \left(\frac{1000}{999}\right) The 10001000 in the numerator and denominator cancel out: S=1+237999S = 1 + \frac{237}{999}

6. Simplify the fraction: Both 237 and 999 are divisible by 3 (sum of digits 2+3+7=122+3+7=12 and 9+9+9=279+9+9=27, both divisible by 3). 237÷3=79237 \div 3 = 79 999÷3=333999 \div 3 = 333 So, 237999=79333\frac{237}{999} = \frac{79}{333}.

7. Final Sum: S=1+79333=333333+79333=333+79333=412333S = 1 + \frac{79}{333} = \frac{333}{333} + \frac{79}{333} = \frac{333+79}{333} = \frac{412}{333}

The sum of the infinite series is 412333\frac{412}{333}.

The series can also be recognized as a repeating decimal: 1.237237237...=1.2371.237237237... = 1.\overline{237}. To convert this to a fraction: Let x=1.237x = 1.\overline{237} x=1+0.237x = 1 + 0.\overline{237} Let y=0.237y = 0.\overline{237} 1000y=237.2371000y = 237.\overline{237} 1000y=237+y1000y = 237 + y 999y=237999y = 237 y=237999=79333y = \frac{237}{999} = \frac{79}{333} So, x=1+79333=333+79333=412333x = 1 + \frac{79}{333} = \frac{333+79}{333} = \frac{412}{333}.