Solveeit Logo

Question

Question: A uniform stick of length L, mass M hinged at one end is released from rest at an angle $\theta_0$ w...

A uniform stick of length L, mass M hinged at one end is released from rest at an angle θ0\theta_0 with the vertical. When the angle with the vertical is θ\theta, the hinge exerts a force FrF_r along the stick and FtF_t perpendicular to the stick. Calculate FrF_r and FtF_t.

A

Fr=Mg2(5cosθ3cosθ0)F_r = \frac{Mg}{2}(5cos\theta-3cos\theta_0)

B

Fr=3Mg2(5cosθ3cosθ0)F_r = \frac{3Mg}{2}(5cos\theta-3cos\theta_0)

C

Ft=3Mg4sinθF_t = \frac{3Mg}{4}sin\theta

D

Ft=Mg4sinθF_t = \frac{Mg}{4}sin\theta

Answer

A, D

Explanation

Solution

Angular Velocity (ω\omega):

The stick is released from rest at angle θ0\theta_0 with the vertical. When the angle is θ\theta, the center of mass (CM) at L/2L/2 has dropped by a vertical height h=L2(cosθcosθ0)h = \frac{L}{2}(\cos\theta - \cos\theta_0).

Using conservation of energy:

Loss in Potential Energy = Gain in Rotational Kinetic Energy

MgL2(cosθcosθ0)=12Iω2Mg \frac{L}{2}(\cos\theta - \cos\theta_0) = \frac{1}{2} I \omega^2

The moment of inertia of a uniform stick about one end is I=13ML2I = \frac{1}{3}ML^2.

MgL2(cosθcosθ0)=12(13ML2)ω2Mg \frac{L}{2}(\cos\theta - \cos\theta_0) = \frac{1}{2} \left(\frac{1}{3}ML^2\right) \omega^2

g(cosθcosθ0)=L3ω2g(\cos\theta - \cos\theta_0) = \frac{L}{3} \omega^2

ω2=3gL(cosθcosθ0)\omega^2 = \frac{3g}{L}(\cos\theta - \cos\theta_0)

Angular Acceleration (α\alpha):

The torque about the hinge is due to gravity acting at the CM.

τ=(Mgsinθ)L2\tau = (Mg \sin\theta) \frac{L}{2}

Also, τ=Iα\tau = I \alpha

MgL2sinθ=13ML2αMg \frac{L}{2} \sin\theta = \frac{1}{3}ML^2 \alpha

α=3g2Lsinθ\alpha = \frac{3g}{2L} \sin\theta

Radial Hinge Force (FrF_r):

The net force in the radial direction (towards the hinge) on the CM causes centripetal acceleration ar=ω2L2a_r = \omega^2 \frac{L}{2}.

The forces along the stick are FrF_r (towards hinge) and MgcosθMg \cos\theta (away from hinge).

FrMgcosθ=Mar=M(ω2L2)F_r - Mg \cos\theta = M a_r = M \left(\omega^2 \frac{L}{2}\right)

Substitute ω2\omega^2:

Fr=Mgcosθ+ML2[3gL(cosθcosθ0)]F_r = Mg \cos\theta + M \frac{L}{2} \left[\frac{3g}{L}(\cos\theta - \cos\theta_0)\right]

Fr=Mgcosθ+32Mg(cosθcosθ0)F_r = Mg \cos\theta + \frac{3}{2} Mg (\cos\theta - \cos\theta_0)

Fr=Mgcosθ+32Mgcosθ32Mgcosθ0F_r = Mg \cos\theta + \frac{3}{2} Mg \cos\theta - \frac{3}{2} Mg \cos\theta_0

Fr=52Mgcosθ32Mgcosθ0F_r = \frac{5}{2} Mg \cos\theta - \frac{3}{2} Mg \cos\theta_0

Fr=Mg2(5cosθ3cosθ0)F_r = \frac{Mg}{2}(5\cos\theta - 3\cos\theta_0)

Tangential Hinge Force (FtF_t):

The net force in the tangential direction on the CM causes tangential acceleration at=αL2a_t = \alpha \frac{L}{2}.

The component of gravity MgsinθMg \sin\theta acts in the tangential direction. The hinge force FtF_t acts perpendicular to the stick. For the stick to accelerate tangentially downwards, FtF_t must oppose the motion or be smaller than the gravitational component.

MgsinθFt=Mat=M(αL2)Mg \sin\theta - F_t = M a_t = M \left(\alpha \frac{L}{2}\right)

Substitute α\alpha:

MgsinθFt=ML2(3g2Lsinθ)Mg \sin\theta - F_t = M \frac{L}{2} \left(\frac{3g}{2L} \sin\theta\right)

MgsinθFt=34MgsinθMg \sin\theta - F_t = \frac{3}{4} Mg \sin\theta

Ft=Mgsinθ34MgsinθF_t = Mg \sin\theta - \frac{3}{4} Mg \sin\theta

Ft=14MgsinθF_t = \frac{1}{4} Mg \sin\theta

Both options (A) and (D) are correct.