Solveeit Logo

Question

Question: A projectile is thrown at an angle 37° from the vertical. The angle of elevation of the highest poin...

A projectile is thrown at an angle 37° from the vertical. The angle of elevation of the highest point of the projectile from point of projection is

A

tan1^{-1}(32\frac{3}{2})

B

tan1^{-1}(23\frac{2}{3})

C

tan1^{-1}(38\frac{3}{8})

D

tan1^{-1}(83\frac{8}{3})

Answer

tan1^{-1}(23\frac{2}{3})

Explanation

Solution

  1. Determine the angle of projection from the horizontal:
    The projectile is thrown at an angle of 37° from the vertical. Therefore, the angle of projection from the horizontal, θ\theta, is:
    θ=9037=53\theta = 90^\circ - 37^\circ = 53^\circ

  2. Recall formulas for maximum height and horizontal range:
    Let uu be the initial velocity of the projectile.
    The maximum height (HH) reached by the projectile is given by:
    H=u2sin2θ2gH = \frac{u^2 \sin^2 \theta}{2g}
    The horizontal range (RR) of the projectile is given by:
    R=u2sin(2θ)gR = \frac{u^2 \sin(2\theta)}{g}

  3. Define the angle of elevation of the highest point:
    The highest point of the projectile's trajectory is at a horizontal distance of R/2R/2 from the point of projection and at a vertical height of HH.
    Let α\alpha be the angle of elevation of the highest point from the point of projection.
    From the geometry, we can write:
    tanα=Vertical heightHorizontal distance to highest point=HR/2=2HR\tan \alpha = \frac{\text{Vertical height}}{\text{Horizontal distance to highest point}} = \frac{H}{R/2} = \frac{2H}{R}

  4. Substitute the formulas for H and R into the expression for tanα\tan \alpha:
    tanα=2(u2sin2θ2g)(u2sin(2θ)g)\tan \alpha = \frac{2 \left(\frac{u^2 \sin^2 \theta}{2g}\right)}{\left(\frac{u^2 \sin(2\theta)}{g}\right)}
    tanα=u2sin2θgu2sin(2θ)g\tan \alpha = \frac{\frac{u^2 \sin^2 \theta}{g}}{\frac{u^2 \sin(2\theta)}{g}}
    tanα=sin2θsin(2θ)\tan \alpha = \frac{\sin^2 \theta}{\sin(2\theta)}

  5. Simplify the expression using trigonometric identities:
    Using the identity sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta:
    tanα=sin2θ2sinθcosθ\tan \alpha = \frac{\sin^2 \theta}{2 \sin \theta \cos \theta}
    tanα=sinθ2cosθ\tan \alpha = \frac{\sin \theta}{2 \cos \theta}
    tanα=12tanθ\tan \alpha = \frac{1}{2} \tan \theta

  6. Substitute the value of θ\theta:
    We found θ=53\theta = 53^\circ.
    We know that tan(53)=43\tan(53^\circ) = \frac{4}{3} (from a 3-4-5 right-angled triangle where 53° is opposite the side of length 4).
    tanα=12×43\tan \alpha = \frac{1}{2} \times \frac{4}{3}
    tanα=46\tan \alpha = \frac{4}{6}
    tanα=23\tan \alpha = \frac{2}{3}

  7. Find the angle α\alpha:
    α=tan1(23)\alpha = \tan^{-1}\left(\frac{2}{3}\right)