Solveeit Logo

Question

Question: A metal block with a base area of $0.20 \ m^2$ rests on a table with a liquid film of thickness 0.25...

A metal block with a base area of 0.20 m20.20 \ m^2 rests on a table with a liquid film of thickness 0.25 mm between them. When a horizontal force of 0.1 N is applied, the block moves at a constant speed. If the liquid's viscosity is 5.0×1035.0 \times 10^{-3} Pa-s, what is the speed of the block?

A

35×10335 \times 10^{-3} m/s

B

25×10325 \times 10^{-3} m/s

C

45×10345 \times 10^{-3} m/s

D

15×10315 \times 10^{-3} m/s

Answer

25 \times 10^{-3} m/s

Explanation

Solution

The viscous force FF is given by F=ηAdvdyF = \eta A \frac{dv}{dy}, where η\eta is the viscosity, AA is the area, and dvdy\frac{dv}{dy} is the velocity gradient. For a thin liquid film, dvdyvh\frac{dv}{dy} \approx \frac{v}{h}, where vv is the block's speed and hh is the film thickness. Since the block moves at a constant speed, the applied force equals the viscous force: F=ηAvhF = \eta A \frac{v}{h}. Rearranging for vv: v=FhηAv = \frac{Fh}{\eta A}. Substituting the given values: v=(0.1 N)(0.25×103 m)(5.0×103 Pas)(0.20 m2)=0.025×1031.0×103 m/s=0.025 m/s=25×103 m/sv = \frac{(0.1 \ N)(0.25 \times 10^{-3} \ m)}{(5.0 \times 10^{-3} \ Pa-s)(0.20 \ m^2)} = \frac{0.025 \times 10^{-3}}{1.0 \times 10^{-3}} \ m/s = 0.025 \ m/s = 25 \times 10^{-3} \ m/s.