Solveeit Logo

Question

Question: The interval in which $y = x^2e^{2x}$ is increasing is...

The interval in which y=x2e2xy = x^2e^{2x} is increasing is

A

(,1)(-\infty,-1)

B

(1,)(-1,\infty)

C

(,1)(0,)(-\infty,-1)\cup(0,\infty)

D

(,0)(1,)(-\infty,0)\cup(1,\infty)

Answer

(,1)(0,)(-\infty,-1)\cup(0,\infty)

Explanation

Solution

To determine the interval where the function y=x2e2xy = x^2e^{2x} is increasing, we need to find its first derivative, dydx\frac{dy}{dx}, and analyze its sign.

  1. Find the first derivative: We use the product rule, (uv)=uv+uv(uv)' = u'v + uv', where u=x2u = x^2 and v=e2xv = e^{2x}. u=ddx(x2)=2xu' = \frac{d}{dx}(x^2) = 2x v=ddx(e2x)=e2xddx(2x)=2e2xv' = \frac{d}{dx}(e^{2x}) = e^{2x} \cdot \frac{d}{dx}(2x) = 2e^{2x}

    So, dydx=(2x)(e2x)+(x2)(2e2x)\frac{dy}{dx} = (2x)(e^{2x}) + (x^2)(2e^{2x}) dydx=2xe2x+2x2e2x\frac{dy}{dx} = 2xe^{2x} + 2x^2e^{2x} Factor out the common terms, 2xe2x2xe^{2x}: dydx=2xe2x(1+x)\frac{dy}{dx} = 2xe^{2x}(1 + x)

  2. Find critical points: Set dydx=0\frac{dy}{dx} = 0 to find the critical points: 2xe2x(1+x)=02xe^{2x}(1 + x) = 0 Since e2xe^{2x} is always positive for all real xx, we only need to consider the other factors: 2x(1+x)=02x(1 + x) = 0 This equation yields two critical points: 2x=0x=02x = 0 \Rightarrow x = 0 1+x=0x=11 + x = 0 \Rightarrow x = -1

  3. Analyze the sign of dydx\frac{dy}{dx}: The critical points x=1x = -1 and x=0x = 0 divide the real number line into three intervals: (,1)(-\infty, -1), (1,0)(-1, 0), and (0,)(0, \infty). We test the sign of dydx\frac{dy}{dx} in each interval. Remember that the sign of dydx\frac{dy}{dx} is determined by the sign of 2x(1+x)2x(1+x) since e2x>0e^{2x} > 0.

    • Interval (,1)(-\infty, -1): Choose a test value, e.g., x=2x = -2. 2(2)(1+(2))=4(1)=42(-2)(1 + (-2)) = -4(-1) = 4. Since 4>04 > 0, dydx>0\frac{dy}{dx} > 0 in this interval. Thus, yy is increasing.

    • Interval (1,0)(-1, 0): Choose a test value, e.g., x=0.5x = -0.5. 2(0.5)(1+(0.5))=1(0.5)=0.52(-0.5)(1 + (-0.5)) = -1(0.5) = -0.5. Since 0.5<0-0.5 < 0, dydx<0\frac{dy}{dx} < 0 in this interval. Thus, yy is decreasing.

    • Interval (0,)(0, \infty): Choose a test value, e.g., x=1x = 1. 2(1)(1+1)=2(2)=42(1)(1 + 1) = 2(2) = 4. Since 4>04 > 0, dydx>0\frac{dy}{dx} > 0 in this interval. Thus, yy is increasing.

  4. Conclusion: The function y=x2e2xy = x^2e^{2x} is increasing when dydx>0\frac{dy}{dx} > 0. This occurs in the intervals (,1)(-\infty, -1) and (0,)(0, \infty). The union of these intervals is (,1)(0,)(-\infty, -1) \cup (0, \infty).