Solveeit Logo

Question

Question: The sum $\sum_{n=1}^{\infty} \frac{9n^2}{(3n)!}$ is equal to...

The sum n=19n2(3n)!\sum_{n=1}^{\infty} \frac{9n^2}{(3n)!} is equal to

A

e + \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2})

B

\frac{2}{3}e - \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2})

C

\frac{2}{3}(e + \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2}))

D

\frac{2}{3}(e - \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2}))

Answer

\frac{2}{3}e - \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2})

Explanation

Solution

The sum is S=n=19n2(3n)!S = \sum_{n=1}^{\infty} \frac{9n^2}{(3n)!}. Using the identity k2k!=1(k2)!+1(k1)!\frac{k^2}{k!} = \frac{1}{(k-2)!} + \frac{1}{(k-1)!} for k2k \ge 2, and setting k=3nk=3n, we get (3n)2(3n)!=1(3n2)!+1(3n1)!\frac{(3n)^2}{(3n)!} = \frac{1}{(3n-2)!} + \frac{1}{(3n-1)!} for n1n \ge 1. Thus, S=n=1(1(3n2)!+1(3n1)!)S = \sum_{n=1}^{\infty} \left(\frac{1}{(3n-2)!} + \frac{1}{(3n-1)!}\right). This can be split into two sums: SA=n=11(3n2)!=11!+14!+17!+S_A = \sum_{n=1}^{\infty} \frac{1}{(3n-2)!} = \frac{1}{1!} + \frac{1}{4!} + \frac{1}{7!} + \dots and SB=n=11(3n1)!=12!+15!+18!+S_B = \sum_{n=1}^{\infty} \frac{1}{(3n-1)!} = \frac{1}{2!} + \frac{1}{5!} + \frac{1}{8!} + \dots. These sums correspond to the Taylor series expansions of exe^x evaluated at x=1x=1 using complex cube roots of unity. Let S0(x)=m=0x3m(3m)!S_0(x) = \sum_{m=0}^{\infty} \frac{x^{3m}}{(3m)!}, S1(x)=m=0x3m+1(3m+1)!S_1(x) = \sum_{m=0}^{\infty} \frac{x^{3m+1}}{(3m+1)!}, S2(x)=m=0x3m+2(3m+2)!S_2(x) = \sum_{m=0}^{\infty} \frac{x^{3m+2}}{(3m+2)!}. At x=1x=1: 3S0(1)=e+eω+eω23S_0(1) = e + e^\omega + e^{\omega^2} 3S1(1)=e+ω2eω+ωeω23S_1(1) = e + \omega^2 e^\omega + \omega e^{\omega^2} 3S2(1)=e+ωeω+ω2eω23S_2(1) = e + \omega e^\omega + \omega^2 e^{\omega^2} The sum SS is SA+SB=S1(1)+S2(1)S_A + S_B = S_1(1) + S_2(1). 3S=3(S1(1)+S2(1))=(e+ω2eω+ωeω2)+(e+ωeω+ω2eω2)3S = 3(S_1(1) + S_2(1)) = (e + \omega^2 e^\omega + \omega e^{\omega^2}) + (e + \omega e^\omega + \omega^2 e^{\omega^2}) 3S=2e+(ω2+ω)eω+(ω+ω2)eω23S = 2e + (\omega^2+\omega)e^\omega + (\omega+\omega^2)e^{\omega^2} Since ω2+ω=1\omega^2+\omega = -1, we have 3S=2eeωeω23S = 2e - e^\omega - e^{\omega^2}. Using eω+eω2=2e1/2cos(32)e^\omega + e^{\omega^2} = 2e^{-1/2}\cos(\frac{\sqrt{3}}{2}), we get: 3S=2e2e1/2cos(32)3S = 2e - 2e^{-1/2}\cos(\frac{\sqrt{3}}{2}) S=23e23e1/2cos(32)S = \frac{2}{3}e - \frac{2}{3}e^{-1/2}\cos(\frac{\sqrt{3}}{2}).