Question
Question: The sum $\sum_{n=1}^{\infty} \frac{9n^2}{(3n)!}$ is equal to...
The sum ∑n=1∞(3n)!9n2 is equal to

e + \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2})
\frac{2}{3}e - \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2})
\frac{2}{3}(e + \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2}))
\frac{2}{3}(e - \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2}))
\frac{2}{3}e - \frac{1}{\sqrt{e}} cos(\frac{\sqrt{3}}{2})
Solution
The sum is S=∑n=1∞(3n)!9n2. Using the identity k!k2=(k−2)!1+(k−1)!1 for k≥2, and setting k=3n, we get (3n)!(3n)2=(3n−2)!1+(3n−1)!1 for n≥1. Thus, S=∑n=1∞((3n−2)!1+(3n−1)!1). This can be split into two sums: SA=∑n=1∞(3n−2)!1=1!1+4!1+7!1+… and SB=∑n=1∞(3n−1)!1=2!1+5!1+8!1+…. These sums correspond to the Taylor series expansions of ex evaluated at x=1 using complex cube roots of unity. Let S0(x)=∑m=0∞(3m)!x3m, S1(x)=∑m=0∞(3m+1)!x3m+1, S2(x)=∑m=0∞(3m+2)!x3m+2. At x=1: 3S0(1)=e+eω+eω2 3S1(1)=e+ω2eω+ωeω2 3S2(1)=e+ωeω+ω2eω2 The sum S is SA+SB=S1(1)+S2(1). 3S=3(S1(1)+S2(1))=(e+ω2eω+ωeω2)+(e+ωeω+ω2eω2) 3S=2e+(ω2+ω)eω+(ω+ω2)eω2 Since ω2+ω=−1, we have 3S=2e−eω−eω2. Using eω+eω2=2e−1/2cos(23), we get: 3S=2e−2e−1/2cos(23) S=32e−32e−1/2cos(23).