Question
Question: $\int \frac{(1-cos2x)}{(1+cos2x)}dx=?$...
∫(1+cos2x)(1−cos2x)dx=?

A
tanx+x+C
B
tanx-x+C
C
-tanx+x+C
D
none of these
Answer
tanx-x+C
Explanation
Solution
To solve the integral ∫(1+cos2x)(1−cos2x)dx, we use standard trigonometric identities.
-
Use half-angle identities:
We know the following trigonometric identities:- 1−cos2x=2sin2x
- 1+cos2x=2cos2x
-
Substitute these identities into the integral: ∫(1+cos2x)(1−cos2x)dx=∫2cos2x2sin2xdx
-
Simplify the expression: ∫cos2xsin2xdx=∫tan2xdx
-
Use the Pythagorean identity for tan2x:
We know that sec2x−tan2x=1, which implies tan2x=sec2x−1. -
Substitute this identity into the integral: ∫tan2xdx=∫(sec2x−1)dx
-
Integrate term by term: ∫(sec2x−1)dx=∫sec2xdx−∫1dx
-
Perform the integration:
We know that:- ∫sec2xdx=tanx+C1
- ∫1dx=x+C2
Combining these, we get: tanx−x+C where C is the constant of integration (C=C1−C2).
Therefore, the final answer is tanx−x+C.