Solveeit Logo

Question

Question: $\int \frac{(1-cos2x)}{(1+cos2x)}dx=?$...

(1cos2x)(1+cos2x)dx=?\int \frac{(1-cos2x)}{(1+cos2x)}dx=?

A

tanx+x+C

B

tanx-x+C

C

-tanx+x+C

D

none of these

Answer

tanx-x+C

Explanation

Solution

To solve the integral (1cos2x)(1+cos2x)dx\int \frac{(1-\cos2x)}{(1+\cos2x)}dx, we use standard trigonometric identities.

  1. Use half-angle identities:
    We know the following trigonometric identities:

    • 1cos2x=2sin2x1 - \cos2x = 2\sin^2x
    • 1+cos2x=2cos2x1 + \cos2x = 2\cos^2x
  2. Substitute these identities into the integral: (1cos2x)(1+cos2x)dx=2sin2x2cos2xdx\int \frac{(1-\cos2x)}{(1+\cos2x)}dx = \int \frac{2\sin^2x}{2\cos^2x}dx

  3. Simplify the expression: sin2xcos2xdx=tan2xdx\int \frac{\sin^2x}{\cos^2x}dx = \int \tan^2x dx

  4. Use the Pythagorean identity for tan2x\tan^2x:
    We know that sec2xtan2x=1\sec^2x - \tan^2x = 1, which implies tan2x=sec2x1\tan^2x = \sec^2x - 1.

  5. Substitute this identity into the integral: tan2xdx=(sec2x1)dx\int \tan^2x dx = \int (\sec^2x - 1)dx

  6. Integrate term by term: (sec2x1)dx=sec2xdx1dx\int (\sec^2x - 1)dx = \int \sec^2x dx - \int 1 dx

  7. Perform the integration:
    We know that:

    • sec2xdx=tanx+C1\int \sec^2x dx = \tan x + C_1
    • 1dx=x+C2\int 1 dx = x + C_2

    Combining these, we get: tanxx+C\tan x - x + C where CC is the constant of integration (C=C1C2C = C_1 - C_2).

Therefore, the final answer is tanxx+C\tan x - x + C.