Solveeit Logo

Question

Question: Let $f$ be a differentiable function in $\left(0,\frac{\pi}{2}\right)$. If $\int_{\cos x}^{1} t^2 f(...

Let ff be a differentiable function in (0,π2)\left(0,\frac{\pi}{2}\right). If cosx1t2f(t)dt=sin3x+cosx1\int_{\cos x}^{1} t^2 f(t) dt = \sin^3 x + \cos x - 1, then f(15)\left|f^{'}\left(\frac{1}{\sqrt{5}}\right)\right| is equal to

A

52\frac{5}{2}

B

552\frac{5\sqrt{5}}{2}

C

255\frac{2}{5\sqrt{5}}

D

25\frac{2}{\sqrt{5}}

Answer

552\frac{5\sqrt{5}}{2}

Explanation

Solution

The problem requires us to find the absolute value of the derivative of a function ff at a specific point, given an integral equation involving f(t)f(t).

1. Differentiate the given integral equation using Leibniz's Rule.

The given equation is cosx1t2f(t)dt=sin3x+cosx1\int_{\cos x}^{1} t^2 f(t) dt = \sin^3 x + \cos x - 1.

Let G(x)=cosx1t2f(t)dtG(x) = \int_{\cos x}^{1} t^2 f(t) dt. According to Leibniz's Rule, if G(x)=a(x)b(x)h(t)dtG(x) = \int_{a(x)}^{b(x)} h(t) dt, then G(x)=h(b(x))b(x)h(a(x))a(x)G'(x) = h(b(x))b'(x) - h(a(x))a'(x).

Here, h(t)=t2f(t)h(t) = t^2 f(t), a(x)=cosxa(x) = \cos x, and b(x)=1b(x) = 1. So, a(x)=sinxa'(x) = -\sin x and b(x)=0b'(x) = 0.

Differentiating the left side:

ddx(cosx1t2f(t)dt)=(1)2f(1)(0)(cosx)2f(cosx)(sinx)\frac{d}{dx} \left( \int_{\cos x}^{1} t^2 f(t) dt \right) = (1)^2 f(1) \cdot (0) - (\cos x)^2 f(\cos x) \cdot (-\sin x) =0(sinxcos2xf(cosx))=sinxcos2xf(cosx)= 0 - (-\sin x \cos^2 x f(\cos x)) = \sin x \cos^2 x f(\cos x)

Differentiating the right side:

ddx(sin3x+cosx1)=3sin2xcosxsinx\frac{d}{dx} (\sin^3 x + \cos x - 1) = 3 \sin^2 x \cos x - \sin x

Equating the derivatives:

sinxcos2xf(cosx)=3sin2xcosxsinx\sin x \cos^2 x f(\cos x) = 3 \sin^2 x \cos x - \sin x

2. Solve for f(cosx)f(\cos x) and then find f(t)f(t).

Since x(0,π2)x \in \left(0, \frac{\pi}{2}\right), sinx0\sin x \neq 0. We can divide both sides by sinx\sin x:

cos2xf(cosx)=3sinxcosx1\cos^2 x f(\cos x) = 3 \sin x \cos x - 1 f(cosx)=3sinxcosx1cos2xf(\cos x) = \frac{3 \sin x \cos x - 1}{\cos^2 x}

Let t=cosxt = \cos x. Since x(0,π2)x \in \left(0, \frac{\pi}{2}\right), t(0,1)t \in (0, 1). Also, for x(0,π2)x \in \left(0, \frac{\pi}{2}\right), sinx=1cos2x=1t2\sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - t^2}. Substitute tt and 1t2\sqrt{1-t^2} into the expression for f(cosx)f(\cos x):

f(t)=3t1t21t2f(t) = \frac{3t \sqrt{1 - t^2} - 1}{t^2}

This can be rewritten as:

f(t)=3t1t2t21t2=31t2t1t2f(t) = \frac{3t \sqrt{1 - t^2}}{t^2} - \frac{1}{t^2} = 3 \frac{\sqrt{1 - t^2}}{t} - \frac{1}{t^2}

3. Differentiate f(t)f(t) to find f(t)f'(t).

We differentiate f(t)f(t) term by term: For the first term, 31t2t3 \frac{\sqrt{1 - t^2}}{t}: Using the quotient rule (uv)=uvuvv2\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, where u=1t2u = \sqrt{1 - t^2} and v=tv = t. u=121t2(2t)=t1t2u' = \frac{1}{2\sqrt{1 - t^2}}(-2t) = \frac{-t}{\sqrt{1 - t^2}} and v=1v' = 1.

ddt(1t2t)=(t1t2)t1t21t2\frac{d}{dt} \left( \frac{\sqrt{1 - t^2}}{t} \right) = \frac{\left(\frac{-t}{\sqrt{1 - t^2}}\right) \cdot t - \sqrt{1 - t^2} \cdot 1}{t^2} =t21t21t21t2t2=t2(1t2)1t2t2=1t21t2= \frac{\frac{-t^2}{\sqrt{1 - t^2}} - \frac{1 - t^2}{\sqrt{1 - t^2}}}{t^2} = \frac{\frac{-t^2 - (1 - t^2)}{\sqrt{1 - t^2}}}{t^2} = \frac{-1}{t^2 \sqrt{1 - t^2}}

So, the derivative of the first term is 3(1t21t2)=3t21t23 \left( \frac{-1}{t^2 \sqrt{1 - t^2}} \right) = -\frac{3}{t^2 \sqrt{1 - t^2}}.

For the second term, 1t2=t2-\frac{1}{t^2} = -t^{-2}:

ddt(t2)=(2)t3=2t3\frac{d}{dt} (-t^{-2}) = -(-2)t^{-3} = \frac{2}{t^3}

Combining these, we get f(t)f'(t):

f(t)=3t21t2+2t3f'(t) = -\frac{3}{t^2 \sqrt{1 - t^2}} + \frac{2}{t^3}

4. Substitute t=15t = \frac{1}{\sqrt{5}} into f(t)f'(t) and calculate the result.

We need to evaluate f(15)f'\left(\frac{1}{\sqrt{5}}\right). First, calculate the necessary values for t=15t = \frac{1}{\sqrt{5}}: t2=(15)2=15t^2 = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5}. t3=(15)3=155t^3 = \left(\frac{1}{\sqrt{5}}\right)^3 = \frac{1}{5\sqrt{5}}. 1t2=115=45=25\sqrt{1 - t^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}.

Now substitute these values into f(t)f'(t):

f(15)=3(15)(25)+2(155)f'\left(\frac{1}{\sqrt{5}}\right) = -\frac{3}{\left(\frac{1}{5}\right) \left(\frac{2}{\sqrt{5}}\right)} + \frac{2}{\left(\frac{1}{5\sqrt{5}}\right)} =3255+255= -\frac{3}{\frac{2}{5\sqrt{5}}} + 2 \cdot 5\sqrt{5} =3552+105= -3 \cdot \frac{5\sqrt{5}}{2} + 10\sqrt{5} =1552+2052= -\frac{15\sqrt{5}}{2} + \frac{20\sqrt{5}}{2} =552= \frac{5\sqrt{5}}{2}

5. Find the absolute value.

The question asks for f(15)\left|f^{'}\left(\frac{1}{\sqrt{5}}\right)\right|.

f(15)=552=552\left|f^{'}\left(\frac{1}{\sqrt{5}}\right)\right| = \left| \frac{5\sqrt{5}}{2} \right| = \frac{5\sqrt{5}}{2}

The final answer is 552\boxed{\frac{5\sqrt{5}}{2}}.