Solveeit Logo

Question

Question: If the equation $\sin^4x-(p+2)\sin^2x-(p+3)=0$ has a solution, the $p$ must lie in the interval যদি...

If the equation sin4x(p+2)sin2x(p+3)=0\sin^4x-(p+2)\sin^2x-(p+3)=0 has a solution, the pp must lie in the interval

যদি sin4x(p+2)sin2x(p+3)=0\sin^4x-(p+2)\sin^2x-(p+3)=0 সমীকরণের একটি সমাধান থাকে, তাহলে pp অবশ্যই যে অন্তরে থাকবে তা=

A

[-3,-2]

B

(-3,-2)

C

(2, 3)

D

[-5, -3]

Answer

[-3,-2]

Explanation

Solution

Let the given equation be sin4x(p+2)sin2x(p+3)=0\sin^4x-(p+2)\sin^2x-(p+3)=0

Let y=sin2xy = \sin^2x. Since xx is a real number, the range of sinx\sin x is [1,1][-1, 1]. Therefore, the range of sin2x\sin^2x is [0,1][0, 1]. So, yy must satisfy 0y10 \le y \le 1.

Substituting y=sin2xy = \sin^2x into the equation, we get a quadratic equation in yy: y2(p+2)y(p+3)=0y^2 - (p+2)y - (p+3) = 0

For the original equation in xx to have a solution, the quadratic equation in yy must have at least one root yy in the interval [0,1][0, 1].

We can find the roots of the quadratic equation y2(p+2)y(p+3)=0y^2 - (p+2)y - (p+3) = 0 using the quadratic formula: y=((p+2))±((p+2))24(1)((p+3))2(1)y = \frac{-(-(p+2)) \pm \sqrt{(-(p+2))^2 - 4(1)(-(p+3))}}{2(1)} y=(p+2)±(p+2)2+4(p+3)2y = \frac{(p+2) \pm \sqrt{(p+2)^2 + 4(p+3)}}{2} y=(p+2)±p2+4p+4+4p+122y = \frac{(p+2) \pm \sqrt{p^2 + 4p + 4 + 4p + 12}}{2} y=(p+2)±p2+8p+162y = \frac{(p+2) \pm \sqrt{p^2 + 8p + 16}}{2} y=(p+2)±(p+4)22y = \frac{(p+2) \pm \sqrt{(p+4)^2}}{2} y=(p+2)±p+42y = \frac{(p+2) \pm |p+4|}{2}

We need to consider two cases based on the sign of p+4p+4.

Case 1: p+40p+4 \ge 0, i.e., p4p \ge -4. In this case, p+4=p+4|p+4| = p+4. The roots are y1=(p+2)+(p+4)2=2p+62=p+3y_1 = \frac{(p+2) + (p+4)}{2} = \frac{2p+6}{2} = p+3 and y2=(p+2)(p+4)2=22=1y_2 = \frac{(p+2) - (p+4)}{2} = \frac{-2}{2} = -1.

Case 2: p+4<0p+4 < 0, i.e., p<4p < -4. In this case, p+4=(p+4)|p+4| = -(p+4). The roots are y1=(p+2)+((p+4))2=p+2p42=22=1y_1 = \frac{(p+2) + (-(p+4))}{2} = \frac{p+2 - p - 4}{2} = \frac{-2}{2} = -1 and y2=(p+2)((p+4))2=p+2+p+42=2p+62=p+3y_2 = \frac{(p+2) - (-(p+4))}{2} = \frac{p+2 + p + 4}{2} = \frac{2p+6}{2} = p+3.

In both cases, the roots of the quadratic equation in yy are 1-1 and p+3p+3. For the original equation in xx to have a solution, at least one of these roots must be in the interval [0,1][0, 1].

The root y=1y = -1 is not in the interval [0,1][0, 1]. Therefore, the other root, y=p+3y = p+3, must be in the interval [0,1][0, 1]. 0p+310 \le p+3 \le 1

To find the values of pp that satisfy this inequality, we subtract 3 from all parts: 03p+33130 - 3 \le p+3 - 3 \le 1 - 3 3p2-3 \le p \le -2

So, the equation has a solution if and only if pp lies in the interval [3,2][-3, -2].