Solveeit Logo

Question

Question: If $\int \frac{sin\theta - cos\theta}{(sin\theta + cos\theta)\sqrt{sin\theta cos\theta + sin^2\theta...

If sinθcosθ(sinθ+cosθ)sinθcosθ+sin2θcos2θdθ=cosec1(f(θ))+C\int \frac{sin\theta - cos\theta}{(sin\theta + cos\theta)\sqrt{sin\theta cos\theta + sin^2\theta cos^2\theta}}d\theta = cosec^{-1}(f(\theta)) + C, then

A

f(0)=sin2θ+1f(0) = sin2\theta + 1

B

f(0)=1sin2θf(0) = 1 - sin2\theta

C

f(0)=sin2θ1f(0) = sin2\theta - 1

D

none of these

Answer

f(0) = sin2θ + 1

Explanation

Solution

To solve the integral I=sinθcosθ(sinθ+cosθ)sinθcosθ+sin2θcos2θdθI = \int \frac{\sin\theta - \cos\theta}{(\sin\theta + \cos\theta)\sqrt{\sin\theta \cos\theta + \sin^2\theta \cos^2\theta}}d\theta, we use a substitution.

Let t=sinθ+cosθt = \sin\theta + \cos\theta.
Differentiating tt with respect to θ\theta:
dt=(cosθsinθ)dθdt = (\cos\theta - \sin\theta)d\theta
So, (sinθcosθ)dθ=dt(\sin\theta - \cos\theta)d\theta = -dt.

Next, we express sinθcosθ\sin\theta\cos\theta in terms of tt:
t2=(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθt^2 = (\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta
t2=1+2sinθcosθt^2 = 1 + 2\sin\theta\cos\theta
sinθcosθ=t212\sin\theta\cos\theta = \frac{t^2 - 1}{2}.

Now, substitute these into the expression under the square root in the denominator:
sinθcosθ+sin2θcos2θ=sinθcosθ(1+sinθcosθ)\sin\theta\cos\theta + \sin^2\theta\cos^2\theta = \sin\theta\cos\theta(1 + \sin\theta\cos\theta)
Substitute sinθcosθ=t212\sin\theta\cos\theta = \frac{t^2 - 1}{2}:
=t212(1+t212)= \frac{t^2 - 1}{2} \left(1 + \frac{t^2 - 1}{2}\right)
=t212(2+t212)= \frac{t^2 - 1}{2} \left(\frac{2 + t^2 - 1}{2}\right)
=t212(t2+12)= \frac{t^2 - 1}{2} \left(\frac{t^2 + 1}{2}\right)
=(t21)(t2+1)4= \frac{(t^2 - 1)(t^2 + 1)}{4}
=t414= \frac{t^4 - 1}{4}.

So the integral becomes:
I=dttt414I = \int \frac{-dt}{t\sqrt{\frac{t^4 - 1}{4}}}
I=dttt412I = \int \frac{-dt}{t \frac{\sqrt{t^4 - 1}}{2}}
I=2dttt41I = \int \frac{-2dt}{t\sqrt{t^4 - 1}}.

To evaluate this integral, let u=t2u = t^2.
Then du=2tdtdu = 2t dt.
So, dt=du2tdt = \frac{du}{2t}.
Substitute uu and dtdt into the integral:
I=2tu21du2tI = \int \frac{-2}{t\sqrt{u^2 - 1}} \frac{du}{2t}
I=dut2u21I = \int \frac{-du}{t^2\sqrt{u^2 - 1}}
Since t2=ut^2 = u, we have:
I=duuu21I = \int \frac{-du}{u\sqrt{u^2 - 1}}.

This is a standard integral form. We know that dxxx2a2=1asec1(xa)+C\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{x}{a}\right) + C.
Here, a=1a=1.
So, I=sec1(u)+CI = -\sec^{-1}(u) + C.

Now, substitute back u=t2u = t^2:
I=sec1(t2)+CI = -\sec^{-1}(t^2) + C.

Finally, substitute back t=sinθ+cosθt = \sin\theta + \cos\theta:
t2=(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ=1+sin2θt^2 = (\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 1 + 2\sin\theta\cos\theta = 1 + \sin2\theta.
So, I=sec1(1+sin2θ)+CI = -\sec^{-1}(1 + \sin2\theta) + C.

The problem states that I=csc1(f(θ))+CI = \csc^{-1}(f(\theta)) + C.
We use the identity relating sec1\sec^{-1} and csc1\csc^{-1}: For x1x \ge 1, sec1(x)+csc1(x)=π2\sec^{-1}(x) + \csc^{-1}(x) = \frac{\pi}{2}.
Therefore, sec1(x)=csc1(x)π2-\sec^{-1}(x) = \csc^{-1}(x) - \frac{\pi}{2}.
Applying this to our integral:
I=csc1(1+sin2θ)π2+CI = \csc^{-1}(1 + \sin2\theta) - \frac{\pi}{2} + C.
Let C=Cπ2C' = C - \frac{\pi}{2}. Then:
I=csc1(1+sin2θ)+CI = \csc^{-1}(1 + \sin2\theta) + C'.

Comparing this with the given form I=csc1(f(θ))+CI = \csc^{-1}(f(\theta)) + C, we find:
f(θ)=1+sin2θf(\theta) = 1 + \sin2\theta.

This matches option (1).