Solveeit Logo

Question

Question: The maximum value of $x^{-x}$ is....

The maximum value of xxx^{-x} is.

A

eee^{-e}

B

e1/ee^{1/e}

C

e1/ee^{-1/e}

D

e

Answer

e1/ee^{1/e}

Explanation

Solution

To find the maximum value of the function f(x)=xxf(x) = x^{-x}, we use calculus, specifically differentiation.

  1. Define the function:
    Let y=xxy = x^{-x}.
    For the function to be well-defined and differentiable using logarithms, we consider x>0x > 0.

  2. Apply Natural Logarithm:
    Taking the natural logarithm on both sides simplifies the exponent:
    lny=ln(xx)\ln y = \ln(x^{-x})
    Using the logarithm property ln(ab)=blna\ln(a^b) = b \ln a:
    lny=xlnx\ln y = -x \ln x

  3. Differentiate with respect to x:
    Differentiate both sides implicitly with respect to xx. Use the product rule for the right side: (uv)=uv+uv(uv)' = u'v + uv'.
    1ydydx=(ddx(x)lnx+xddx(lnx))\frac{1}{y} \frac{dy}{dx} = -\left( \frac{d}{dx}(x) \cdot \ln x + x \cdot \frac{d}{dx}(\ln x) \right)
    1ydydx=(1lnx+x1x)\frac{1}{y} \frac{dy}{dx} = -\left( 1 \cdot \ln x + x \cdot \frac{1}{x} \right)
    1ydydx=(lnx+1)\frac{1}{y} \frac{dy}{dx} = -(\ln x + 1)

  4. Solve for dydx\frac{dy}{dx}:
    Multiply both sides by yy:
    dydx=y(lnx+1)\frac{dy}{dx} = -y(\ln x + 1)
    Substitute y=xxy = x^{-x} back into the equation:
    dydx=xx(lnx+1)\frac{dy}{dx} = -x^{-x}(\ln x + 1)

  5. Find Critical Points:
    To find the maximum or minimum values, set the first derivative equal to zero:
    dydx=0\frac{dy}{dx} = 0
    xx(lnx+1)=0-x^{-x}(\ln x + 1) = 0
    Since xx=1xxx^{-x} = \frac{1}{x^x} is always positive for x>0x > 0, we must have:
    lnx+1=0\ln x + 1 = 0
    lnx=1\ln x = -1
    To solve for xx, exponentiate both sides with base ee:
    x=e1x = e^{-1}
    x=1ex = \frac{1}{e}

  6. Determine if it's a Maximum:
    We use the first derivative test. We examine the sign of dydx\frac{dy}{dx} around x=1ex = \frac{1}{e}.
    Recall dydx=xx(lnx+1)\frac{dy}{dx} = -x^{-x}(\ln x + 1). The term xx-x^{-x} is always negative. The sign of dydx\frac{dy}{dx} depends on the sign of (lnx+1)(\ln x + 1).

    • For x<1ex < \frac{1}{e} (e.g., x=1e2x = \frac{1}{e^2}):
      lnx<ln(1e)    lnx<1\ln x < \ln(\frac{1}{e}) \implies \ln x < -1.
      So, lnx+1<0\ln x + 1 < 0.
      Then dydx=(negative)×(negative)=positive\frac{dy}{dx} = (\text{negative}) \times (\text{negative}) = \text{positive}.
      This means f(x)f(x) is increasing for x<1ex < \frac{1}{e}.

    • For x>1ex > \frac{1}{e} (e.g., x=ex = e):
      lnx>ln(e)    lnx>1\ln x > \ln(e) \implies \ln x > 1.
      So, lnx+1>0\ln x + 1 > 0.
      Then dydx=(negative)×(positive)=negative\frac{dy}{dx} = (\text{negative}) \times (\text{positive}) = \text{negative}.
      This means f(x)f(x) is decreasing for x>1ex > \frac{1}{e}.

Since the function changes from increasing to decreasing at x=1ex = \frac{1}{e}, this point corresponds to a local maximum.

  1. Calculate the Maximum Value:
    Substitute x=1ex = \frac{1}{e} back into the original function f(x)=xxf(x) = x^{-x}:
    f(1e)=(1e)1ef\left(\frac{1}{e}\right) = \left(\frac{1}{e}\right)^{-\frac{1}{e}}
    Since 1e=e1\frac{1}{e} = e^{-1}, we have:
    f(1e)=(e1)1ef\left(\frac{1}{e}\right) = (e^{-1})^{-\frac{1}{e}}
    Using the exponent rule (ab)c=abc(a^b)^c = a^{bc}:
    f(1e)=e(1)(1e)f\left(\frac{1}{e}\right) = e^{(-1) \cdot (-\frac{1}{e})}
    f(1e)=e1ef\left(\frac{1}{e}\right) = e^{\frac{1}{e}}

The maximum value of xxx^{-x} is e1/ee^{1/e}.