Solveeit Logo

Question

Question: If $A + B = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$ w...

If A+B=[1tanθ2tanθ21]A + B = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix} where AA is symmetric and BB is skew-symmetric matrix, then the matrix (A1B+AB1)(A^{-1}B + AB^{-1}) at θ=π6\theta = \frac{\pi}{6} is given by

A

[123231]\begin{bmatrix} 1 & 2\sqrt{3} \\ 2\sqrt{3} & 1 \end{bmatrix}

B

[123231]\begin{bmatrix} -1 & -2\sqrt{3} \\ 2\sqrt{3} & 1 \end{bmatrix}

C

[023230]\begin{bmatrix} 0 & 2\sqrt{3} \\ 2\sqrt{3} & 0 \end{bmatrix}

D

[023230]\begin{bmatrix} 0 & -2\sqrt{3} \\ 2\sqrt{3} & 0 \end{bmatrix}

Answer

[023230]\begin{bmatrix} 0 & -2\sqrt{3} \\ 2\sqrt{3} & 0 \end{bmatrix}

Explanation

Solution

Here's how to solve the problem:

  1. Decompose the matrix: Express AA and BB in terms of the given matrix and its transpose. Since AA is symmetric and BB is skew-symmetric, we have:

    A=12(M+MT)A = \frac{1}{2}(M + M^T) and B=12(MMT)B = \frac{1}{2}(M - M^T), where M=[1tan(θ2)tan(θ2)1]M = \begin{bmatrix} 1 & \tan(\frac{\theta}{2}) \\ -\tan(\frac{\theta}{2}) & 1 \end{bmatrix}.

  2. Calculate A and B: Compute AA and BB using the formulas above. You'll find that A=IA = I (the identity matrix) and B=[0tan(θ2)tan(θ2)0]B = \begin{bmatrix} 0 & \tan(\frac{\theta}{2}) \\ -\tan(\frac{\theta}{2}) & 0 \end{bmatrix}.

  3. Simplify the expression: Since A=IA = I, the expression A1B+AB1A^{-1}B + AB^{-1} simplifies to B+B1B + B^{-1}.

  4. Calculate B inverse: Find the inverse of BB. If t=tan(θ2)t = \tan(\frac{\theta}{2}), then B=[0tt0]B = \begin{bmatrix} 0 & t \\ -t & 0 \end{bmatrix}, and B1=[01t1t0]B^{-1} = \begin{bmatrix} 0 & -\frac{1}{t} \\ \frac{1}{t} & 0 \end{bmatrix}.

  5. Compute B + B inverse: Add BB and B1B^{-1}: B+B1=[0t1tt+1t0]B + B^{-1} = \begin{bmatrix} 0 & t - \frac{1}{t} \\ -t + \frac{1}{t} & 0 \end{bmatrix}.

  6. Evaluate at theta = pi/6: Substitute θ=π6\theta = \frac{\pi}{6}. Then t=tan(π12)=23t = \tan(\frac{\pi}{12}) = 2 - \sqrt{3}. Also, 1t=2+3\frac{1}{t} = 2 + \sqrt{3}.

  7. Final Calculation: Calculate t1t=(23)(2+3)=23t - \frac{1}{t} = (2 - \sqrt{3}) - (2 + \sqrt{3}) = -2\sqrt{3}. Therefore, B+B1=[023230]B + B^{-1} = \begin{bmatrix} 0 & -2\sqrt{3} \\ 2\sqrt{3} & 0 \end{bmatrix}.

Thus, the final answer is [023230]\begin{bmatrix} 0 & -2\sqrt{3} \\ 2\sqrt{3} & 0 \end{bmatrix}.