Solveeit Logo

Question

Question: If p, q, r are distinct non zero real numbers and $$f(x) = \begin{vmatrix} p^2+x^2 & pq & pr \\ pq &...

If p, q, r are distinct non zero real numbers and f(x)=p2+x2pqprpqq2+x2qrprqrr2+x2f(x) = \begin{vmatrix} p^2+x^2 & pq & pr \\ pq & q^2+x^2 & qr \\ pr & qr & r^2+x^2 \end{vmatrix} , then the number of distinct (both real and imaginary included) roots of f(x) = 0 are

A

4

B

5

C

2

D

3

Answer

3

Explanation

Solution

The given determinant is: f(x)=p2+x2pqprpqq2+x2qrprqrr2+x2f(x) = \begin{vmatrix} p^2+x^2 & pq & pr \\ pq & q^2+x^2 & qr \\ pr & qr & r^2+x^2 \end{vmatrix} This matrix can be written as M=vvT+x2IM = vv^T + x^2 I, where v=(pqr)v = \begin{pmatrix} p \\ q \\ r \end{pmatrix} and II is the 3x3 identity matrix. The determinant of such a matrix is given by det(x2I+vvT)=(x2)n+vTv(x2)n1\det(x^2 I + vv^T) = (x^2)^n + v^T v \cdot (x^2)^{n-1}, where nn is the order of the matrix. Here, n=3n=3. So, f(x)=(x2)3+(p2+q2+r2)(x2)31f(x) = (x^2)^3 + (p^2+q^2+r^2) \cdot (x^2)^{3-1} f(x)=x6+(p2+q2+r2)x4f(x) = x^6 + (p^2+q^2+r^2) x^4 f(x)=x4(x2+p2+q2+r2)f(x) = x^4 (x^2 + p^2+q^2+r^2)

To find the roots of f(x)=0f(x)=0, we set: x4(x2+p2+q2+r2)=0x^4 (x^2 + p^2+q^2+r^2) = 0

This equation yields two sets of roots:

  1. x4=0    x=0x^4 = 0 \implies x = 0 (This is a root with multiplicity 4).
  2. x2+p2+q2+r2=0    x2=(p2+q2+r2)x^2 + p^2+q^2+r^2 = 0 \implies x^2 = -(p^2+q^2+r^2). Since p,q,rp, q, r are distinct non-zero real numbers, p2>0,q2>0,r2>0p^2 > 0, q^2 > 0, r^2 > 0. Thus, p2+q2+r2>0p^2+q^2+r^2 > 0. Let K=p2+q2+r2K = p^2+q^2+r^2. Then x2=Kx^2 = -K. The roots are x=±K=±iK=±ip2+q2+r2x = \pm \sqrt{-K} = \pm i\sqrt{K} = \pm i\sqrt{p^2+q^2+r^2}. These are two distinct imaginary roots.

The roots of f(x)=0f(x)=0 are 0,0,0,0,ip2+q2+r2,ip2+q2+r20, 0, 0, 0, i\sqrt{p^2+q^2+r^2}, -i\sqrt{p^2+q^2+r^2}. The distinct roots are 00, ip2+q2+r2i\sqrt{p^2+q^2+r^2}, and ip2+q2+r2-i\sqrt{p^2+q^2+r^2}. Therefore, there are 3 distinct roots.