Question
Question: The value of $\int \frac{dx}{\sqrt{(1-x^2)} \sin^{-1} x}$ is...
The value of ∫(1−x2)sin−1xdx is

A
(sin−1x)2+c
B
sin−1x+c
C
2sin−1x+c
D
2(sin−1x)2+c
Answer
2\sqrt{\sin^{-1}x} + c
Explanation
Solution
The integral is ∫(1−x2)sin−1xdx. Assuming the question intends the sin−1x term to be under the square root in the denominator, the integral is ∫1−x2sin−1xdx. Let u=sin−1x. Then du=1−x21dx. The integral transforms to ∫u1du=∫u−1/2du. Integrating u−1/2 gives 1/2u1/2+C=2u+C. Substituting back u=sin−1x, we get 2sin−1x+C.