Solveeit Logo

Question

Question: The reaction $ZnO(s) + CO(g) \rightleftharpoons Zn(g) + CO_2(g)$ has an equilibrium constant of 1 at...

The reaction ZnO(s)+CO(g)Zn(g)+CO2(g)ZnO(s) + CO(g) \rightleftharpoons Zn(g) + CO_2(g) has an equilibrium constant of 1 atm at 1500 K. The equilibrium partial pressure of zinc vapour in a reaction vessel if an equimolar mixture of CO and CO2CO_2 is brought into contact with solid ZnO at 1500 K and the equilibrium is achieved at 1 atm is

A

0.68 atm

B

0.76 atm

C

0.24 atm

D

0.5 atm

Answer

0.24 atm

Explanation

Solution

The reaction is ZnO(s)+CO(g)Zn(g)+CO2(g)ZnO(s) + CO(g) \rightleftharpoons Zn(g) + CO_2(g). The equilibrium constant in terms of partial pressures is Kp=PZnPCO2PCOK_p = \frac{P_{Zn} \cdot P_{CO_2}}{P_{CO}}. Given Kp=1K_p = 1 atm at 1500 K.

Let the initial partial pressures of CO and CO2CO_2 be xx atm each. PZn,i=0P_{Zn,i} = 0. At equilibrium, let PZn,eq=pP_{Zn,eq} = p. Then, PCO2,eq=x+pP_{CO_2,eq} = x + p and PCO,eq=xpP_{CO,eq} = x - p.

Total pressure at equilibrium is 1 atm: Ptotal=PCO+PZn+PCO2=(xp)+p+(x+p)=2x+p=1P_{total} = P_{CO} + P_{Zn} + P_{CO_2} = (x-p) + p + (x+p) = 2x + p = 1. So, x=1p2x = \frac{1-p}{2}.

Equilibrium partial pressures in terms of pp: PZn,eq=pP_{Zn,eq} = p PCO2,eq=1p2+p=1+p2P_{CO_2,eq} = \frac{1-p}{2} + p = \frac{1+p}{2} PCO,eq=1p2p=13p2P_{CO,eq} = \frac{1-p}{2} - p = \frac{1-3p}{2}

Substitute into KpK_p: Kp=p1+p213p2=1K_p = \frac{p \cdot \frac{1+p}{2}}{\frac{1-3p}{2}} = 1 p(1+p)13p=1\frac{p(1+p)}{1-3p} = 1 p+p2=13pp + p^2 = 1 - 3p p2+4p1=0p^2 + 4p - 1 = 0

Using the quadratic formula, p=4±424(1)(1)2(1)=4±202=2±5p = \frac{-4 \pm \sqrt{4^2 - 4(1)(-1)}}{2(1)} = \frac{-4 \pm \sqrt{20}}{2} = -2 \pm \sqrt{5}. Since pressure must be positive, p=2+50.236p = -2 + \sqrt{5} \approx 0.236 atm.