Solveeit Logo

Question

Question: If $x^2 + y^2 = t + \frac{1}{t}$ and $x^4 + y^4 = t^2 + \frac{1}{t^2}$, $\frac{dy}{dx}$ is equal to...

If x2+y2=t+1tx^2 + y^2 = t + \frac{1}{t} and x4+y4=t2+1t2x^4 + y^4 = t^2 + \frac{1}{t^2},

dydx\frac{dy}{dx} is equal to

A

yx\frac{y}{x}

B

yx\frac{-y}{x}

C

xy\frac{x}{y}

D

xy\frac{-x}{y}

Answer

yx\frac{-y}{x}

Explanation

Solution

We are given:

x2+y2=t+1t(1)x^2 + y^2 = t + \frac{1}{t} \quad \text{(1)} x4+y4=t2+1t2(2)x^4 + y^4 = t^2 + \frac{1}{t^2} \quad \text{(2)}

Step 1: Eliminate tt using the identity

Square equation (1):

(x2+y2)2=(t+1t)2=t2+2+1t2(x^2 + y^2)^2 = \left(t + \frac{1}{t}\right)^2 = t^2 + 2 + \frac{1}{t^2}

But we also know from (1) and (2) that:

(x2+y2)2=x4+y4+2x2y2=(t2+1t2)+2x2y2(x^2 + y^2)^2 = x^4 + y^4 + 2x^2y^2 = \left(t^2+\frac{1}{t^2}\right) + 2x^2y^2

Equate the two expressions:

t2+2+1t2=t2+1t2+2x2y2t^2 + 2 + \frac{1}{t^2} = t^2 + \frac{1}{t^2} + 2x^2y^2

This simplifies to:

2=2x2y2x2y2=12 = 2x^2y^2 \quad \Longrightarrow \quad x^2y^2 = 1

Step 2: Differentiate the relation

Differentiate x2y2=1x^2y^2 = 1 with respect to xx:

ddx(x2y2)=0\frac{d}{dx}(x^2y^2) = 0

Using the product and chain rules:

2xy2+2x2ydydx=02x\,y^2 + 2x^2y\,\frac{dy}{dx} = 0

Divide by 2xy2xy (assuming x0x \neq 0 and y0y \neq 0):

xy2xy+x2yxydydx=0y+xdydx=0\frac{x\,y^2}{xy} + \frac{x^2y}{xy}\frac{dy}{dx} = 0 \quad \Longrightarrow \quad y + x\frac{dy}{dx} = 0

Thus:

dydx=yx\frac{dy}{dx} = -\frac{y}{x}