Solveeit Logo

Question

Question: The energy released in the fission of 1 kg of $_{92}U^{235}$ is: (energy per fission = 200 MeV)...

The energy released in the fission of 1 kg of 92U235_{92}U^{235} is: (energy per fission = 200 MeV)

A

5.1 x 102610^{26} eV

B

5.1 x 102610^{26} J

C

8.2 x 101310^{13} J

D

8.2 x 101310^{13} MeV

Answer

8.2 x 101310^{13} J

Explanation

Solution

  1. Calculate the number of U-235 atoms in 1 kg:

    • Mass of U-235 = 1 kg = 1000 g.
    • Molar mass of U-235 = 235 g/mol.
    • Avogadro's number (NAN_A) = 6.023×10236.023 \times 10^{23} atoms/mol.
    • Number of moles = MassMolar mass=1000 g235 g/mol\frac{\text{Mass}}{\text{Molar mass}} = \frac{1000 \text{ g}}{235 \text{ g/mol}}.
    • Number of atoms = Number of moles ×NA=1000235×6.023×1023\times N_A = \frac{1000}{235} \times 6.023 \times 10^{23} atoms.
  2. Calculate the total energy released in Joules:

    • Energy per fission = 200 MeV.
    • Conversion factor: 1 MeV = 1.602×10131.602 \times 10^{-13} J.
    • Total energy (in Joules) = (Number of atoms) ×\times (Energy per fission in MeV) ×\times (Conversion factor to Joules).
    • Total energy (J) = (1000235×6.023×1023)×200×(1.602×1013)\left(\frac{1000}{235} \times 6.023 \times 10^{23}\right) \times 200 \times (1.602 \times 10^{-13}) J.
    • Total energy (J) = 1000×6.023×200×1.602235×10(2313)\frac{1000 \times 6.023 \times 200 \times 1.602}{235} \times 10^{(23-13)} J.
    • Total energy (J) 1929220235×1010\approx \frac{1929220}{235} \times 10^{10} J.
    • Total energy (J) 8209.4×1010\approx 8209.4 \times 10^{10} J.
    • Total energy (J) 8.2×1013\approx 8.2 \times 10^{13} J.